Functional Characterization of Rare Variants Implicated in Susceptibility to Lone Atrial Fibrillation

Author:

Hayashi Kenshi1,Konno Tetsuo1,Tada Hayato1,Tani Satoyuki1,Liu Li1,Fujino Noboru1,Nohara Atsushi1,Hodatsu Akihiko1,Tsuda Toyonobu1,Tanaka Yoshihiro1,Kawashiri Masa-aki1,Ino Hidekazu1,Makita Naomasa1,Yamagishi Masakazu1

Affiliation:

1. From the Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan (K.H., T.K., H.T., S.T., L.L., N.F., A.N., A.H., T.T., Y.T., M.K., M.Y.); Department of Cardiology, Komatsu Municipal Hospital, Komatsu, Japan (H.I.); and Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan (N.M.).

Abstract

Background— Few rare variants in atrial fibrillation (AF)–associated genes have been functionally characterized to identify a causal relationship between these variants and development of AF. We here sought to determine the clinical effect of rare variants in AF-associated genes in patients with lone AF and characterized these variants electrophysiologically and bioinformatically. Methods and Results— We screened all coding regions in 12 AF-associated genes in 90 patients with lone AF, with an onset of 47±11 years (66 men; mean age, 56±13 years) by high-resolution melting curve analysis and DNA sequencing. The potassium and sodium currents were analyzed using whole-cell patch clamping. In addition to using 4 individual in silico prediction tools, we extended those predictions to an integrated tool (Combined Annotation Dependent Depletion). We identified 7 rare variants in KCNA5 , KCNQ1 , KCNH2 , SCN5A , and SCN1B genes in 8 patients: 2 of 8 probands had a family history of AF. Electrophysiological studies revealed that 2 variants showed a loss-of-function, and 4 variants showed a gain-of-function. Five of 6 variants with electrophysiological abnormalities were predicted as pathogenic by Combined Annotation Dependent Depletion scores. Conclusions— In our cohort of patients with lone AF, 7 rare variants in cardiac ion channels were identified in 8 probands. A combination of electrophysiological studies and in silico predictions showed that these variants could contribute to the development of lone AF, although further in vivo study is necessary to confirm these results. More than half of AF-associated rare variants showed gain-of-function behavior, which may be targeted using genotype-specific pharmacological therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3