Circadian Pattern of Ion Channel Gene Expression in Failing Human Hearts

Author:

McTiernan Charles F.1ORCID,Lemster Bonnie H.1,Bedi Kenneth C.2ORCID,Margulies Kenneth B.3ORCID,Moravec Christine S.4ORCID,Hsieh Paishiun Nelson5,Shusterman Vladimir6ORCID,Saba Samir1ORCID

Affiliation:

1. Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.).

2. Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B).

3. Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.).

4. Department of Cardiovascular Medicine, Cleveland Clinic Foundation, OH (C.S.M.).

5. School of Medicine, Case Western Reserve University, Cleveland, OH (P.N.H.).

6. Department of Internal Medicine, University of Iowa, Iowa City (V.S.).

Abstract

Background: Ventricular tachyarrhythmias and sudden cardiac death show a circadian pattern of occurrence in patients with heart failure. In the rodent ventricle, a significant portion of genes, including some ion channels, shows a circadian pattern of expression. However, genes that define electrophysiological properties in failing human heart ventricles have not been examined for a circadian expression pattern. Methods: Ventricular tissue samples were collected from patients at the time of cardiac transplantation. Two sets of samples (n=37 and 46, one set with a greater arrhythmic history) were selected to generate pseudo-time series according to their collection time. A third set (n=27) of samples was acquired from the nonfailing ventricles of brain-dead donors. The expression of 5 known circadian clock genes and 19 additional ion channel genes plausibly important to electrophysiological properties were analyzed by real-time polymerase chain reaction and then analyzed for the percentage of expression variation attributed to a 24-hour circadian pattern. Results: The 5 known circadian clock gene transcripts showed a strong circadian expression pattern. Compared with rodent hearts, the human circadian clock gene transcripts showed a similar temporal order of acrophases but with a ≈7.6 hours phase shift. Five of the ion channel genes also showed strong circadian expression. Comparable studies of circadian clock gene expression in samples recovered from nonheart failure brain-dead donors showed acrophase shifts, or weak or complete loss of circadian rhythmicity, suggesting alterations in circadian gene expression. Conclusions: Ventricular tissue from failing human hearts display a circadian pattern of circadian clock gene expression but phase-shifted relative to rodent hearts. At least 5 ion channels show a circadian expression pattern in the ventricles of failing human hearts, which may underlie a circadian pattern of ventricular tachyarrhythmia/sudden cardiac death. Nonfailing hearts from brain-dead donors show marked differences in circadian clock gene expression patterns, suggesting fundamental deviations from circadian expression.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3