Machine Learning of 12-Lead QRS Waveforms to Identify Cardiac Resynchronization Therapy Patients With Differential Outcomes

Author:

Feeny Albert K.1ORCID,Rickard John2,Trulock Kevin M.2,Patel Divyang2,Toro Saleem2,Moennich Laurie Ann2,Varma Niraj12ORCID,Niebauer Mark J.12,Gorodeski Eiran Z.12ORCID,Grimm Richard A.1,Barnard John13ORCID,Madabhushi Anant45,Chung Mina K.16ORCID

Affiliation:

1. Cleveland Clinic Lerner College of Medicine (A.K.F., N.V., M.J.N., E.Z.G., R.A.G., J.B., M.K.C.), Case Western Reserve University, Cleveland, OH.

2. Department of Cardiovascular Medicine, Heart and Vascular Institute (J.R., K.M.T., D.P., S.T., L.A.M., N.V., M.J.N., E.Z.G.), Cleveland Clinic, OH.

3. Department of Quantitative Health Sciences, Lerner Research Institute (J.B.), Cleveland Clinic, OH.

4. Department of Biomedical Engineering (A.M.), Case Western Reserve University, Cleveland, OH.

5. Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH (A.M.).

6. Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute (M.K.C.), Cleveland Clinic, OH.

Abstract

Background: Cardiac resynchronization therapy (CRT) improves heart failure outcomes but has significant nonresponse rates, highlighting limitations in ECG selection criteria: QRS duration (QRSd) ≥150 ms and subjective labeling of left bundle branch block (LBBB). We explored unsupervised machine learning of ECG waveforms to identify CRT subgroups that may differentiate outcomes beyond QRSd and LBBB. Methods: We retrospectively analyzed 946 CRT patients with conduction delay. Principal component analysis (PCA) dimensionality reduction obtained a 2-dimensional representation of preCRT 12-lead QRS waveforms. k -means clustering of the 2-dimensional PCA representation of 12-lead QRS waveforms identified 2 patient subgroups (QRS PCA groups). Vectorcardiographic QRS area was also calculated. We examined following 2 primary outcomes: (1) composite end point of death, left ventricular assist device, or heart transplant, and (2) degree of echocardiographic left ventricular ejection fraction (LVEF) change after CRT. Results: Compared with QRS PCA Group 2 ( n =425), Group 1 ( n =521) had lower risk for reaching the composite end point (HR, 0.44 [95% CI, 0.38–0.53]; P <0.001) and experienced greater mean LVEF improvement (11.1±11.7% versus 4.8±9.7%; P <0.001), even among patients with LBBB with QRSd ≥150 ms (HR, 0.42 [95% CI, 0.30–0.57]; P <0.001; mean LVEF change 12.5±11.8% versus 7.3±8.1%; P =0.001). QRS area also stratified outcomes but had significant differences from QRS PCA groups. A stratification scheme combining QRS area and QRS PCA group identified patients with LBBB with similar outcomes to non-LBBB patients (HR, 1.32 [95% CI, 0.93–1.62]; difference in mean LVEF change: 0.8% [95% CI, −2.1% to 3.7%]). The stratification scheme also identified patients with LBBB with QRSd <150 ms with comparable outcomes to patients with LBBB with QRSd ≥150 ms (HR, 0.93 [95% CI, 0.67–1.29]; difference in mean LVEF change: −0.2% [95% CI, −2.7% to 3.0%]). Conclusions: Unsupervised machine learning of ECG waveforms identified CRT subgroups with relevance beyond LBBB and QRSd. This method may assist in objective classification of bundle branch block morphology in CRT.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3