Preprocedure Application of Machine Learning and Mechanistic Simulations Predicts Likelihood of Paroxysmal Atrial Fibrillation Recurrence Following Pulmonary Vein Isolation

Author:

Shade Julie K.12ORCID,Ali Rheeda L.1ORCID,Basile Dante12,Popescu Dan13,Akhtar Tauseef4,Marine Joseph E.4,Spragg David D.4,Calkins Hugh14ORCID,Trayanova Natalia A.125ORCID

Affiliation:

1. Alliance for Cardiovascular Diagnostic and Treatment Innovation (J.K.S., R.L.A., D.B., D.P., H.C., N.A.T.), Johns Hopkins University, Baltimore, MD.

2. Department of Biomedical Engineering (J.K.S., D.B., N.A.T.), Johns Hopkins University, Baltimore, MD.

3. Department of Applied Math and Statistics (D.P.), Johns Hopkins University, Baltimore, MD.

4. Division of Cardiology, Department of Medicine (T.A., J.E.M., D.D.S., H.C.), Johns Hopkins University School of Medicine, Baltimore, MD.

5. Department of Medicine (N.A.T.), Johns Hopkins University School of Medicine, Baltimore, MD.

Abstract

Background: Pulmonary vein isolation (PVI) is an effective treatment strategy for patients with atrial fibrillation (AF), but many experience AF recurrence and require repeat ablation procedures. The goal of this study was to develop and evaluate a methodology that combines machine learning (ML) and personalized computational modeling to predict, before PVI, which patients are most likely to experience AF recurrence after PVI. Methods: This single-center retrospective proof-of-concept study included 32 patients with documented paroxysmal AF who underwent PVI and had preprocedural late gadolinium enhanced magnetic resonance imaging. For each patient, a personalized computational model of the left atrium simulated AF induction via rapid pacing. Features were derived from pre-PVI late gadolinium enhanced magnetic resonance images and from results of simulations of AF induction. The most predictive features were used as input to a quadratic discriminant analysis ML classifier, which was trained, optimized, and evaluated with 10-fold nested cross-validation to predict the probability of AF recurrence post-PVI. Results: In our cohort, the ML classifier predicted probability of AF recurrence with an average validation sensitivity and specificity of 82% and 89%, respectively, and a validation area under the curve of 0.82. Dissecting the relative contributions of simulations of AF induction and raw images to the predictive capability of the ML classifier, we found that when only features from simulations of AF induction were used to train the ML classifier, its performance remained similar (validation area under the curve, 0.81). However, when only features extracted from raw images were used for training, the validation area under the curve significantly decreased (0.47). Conclusions: ML and personalized computational modeling can be used together to accurately predict, using only pre-PVI late gadolinium enhanced magnetic resonance imaging scans as input, whether a patient is likely to experience AF recurrence following PVI, even when the patient cohort is small.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3