Visualization of Epicardial Cryoablation Lesions Using Endogenous Tissue Fluorescence

Author:

Swift Luther1,Gil Daniel A.B.1,Jaimes Rafael1,Kay Matthew1,Mercader Marco1,Sarvazyan Narine1

Affiliation:

1. From the Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC (L.S., D.A.B.G., M.K., N.S.); Department of Electrical and Computer Engineering, George Washington School of Engineering and Applied Science, Washington, DC (D.A.B.G., R.J., M.K.); and Division of Cardiology, George Washington University School of Medicine and Health Sciences and Medical Faculty Associates, Washington, DC (M.M.).

Abstract

Background— Percutaneous cryoballoon ablation is a commonly used procedure to treat atrial fibrillation. One of the major limitations of the procedure is the inability to directly visualize tissue damage and functional gaps between the lesions. We seek to develop an approach that will enable real-time visualization of tissue necrosis during cryo- or radiofrequency ablation procedures. Methods and Results— Cryoablation of either blood-perfused or saline-perfused hearts was associated with a marked decrease in nicotinamide adenine dinucleotide (NADH) fluorescence, leading to a 60% to 70% loss of signal intensity at the lesion site. The total lesion area observed on the NADH channel exhibited a strong correlation with the area identified by triphenyl tetrazolium staining ( r =0.89, P <0.001). At physiological temperatures, loss of NADH became visually apparent within 26±8 s after detachment of the cryoprobe from the epicardial surface and plateaued within minutes after which the boundaries of the lesions remained stable for several hours. The loss of electrical activity within the cryoablation site exhibited a close spatial correlation with the loss of NADH ( r =0.84±0.06, P <0.001). Cryoablation led to a decrease in diffuse reflectance across the entire visible spectrum, which was in stark contrast to radiofrequency ablation that markedly increased the intensity of reflected light at the lesion sites. Conclusions— We confirmed the feasibility of using endogenous NADH fluorescence for the real-time visualization of cryoablation lesions in blood-perfused cardiac muscle preparations and revealed similarities and differences between imaging cryo- and radiofrequency ablation lesions when using ultraviolet and visible light illumination.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3