Utilizing Human-Induced Pluripotent Stem Cells to Study Cardiac Electroporation Pulsed-Field Ablation

Author:

Maizels Leonid1234ORCID,Heller Eyal1ORCID,Landesberg Michal5,Glatstein Shany5ORCID,Huber Irit5,Arbel Gil5,Gepstein Amira15,Aronson Doron6ORCID,Sharabi Shirley7,Beinart Roy12ORCID,Segev Amit2,Maor Elad123ORCID,Gepstein Lior56ORCID

Affiliation:

1. Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.).

2. Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.).

3. Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.).

4. Department of Cardiology, Royal Melbourne Hospital, Australia (L.M.).

5. Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.).

6. Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.).

7. Advanced Technology Center and Department of Radiology, Sheba Medical Center, Ramat Gan, Israel (S.S.).

Abstract

BACKGROUND: Electroporation is a promising nonthermal ablation method for cardiac arrhythmia treatment. Although initial clinical studies found electroporation pulsed-field ablation (PFA) both safe and efficacious, there are significant knowledge gaps concerning the mechanistic nature and electrophysiological consequences of cardiomyocyte electroporation, contributed by the paucity of suitable human in vitro models. Here, we aimed to establish and characterize a functional in vitro model based on human-induced pluripotent stem cells (hiPSCs)-derived cardiac tissue, and to study the fundamentals of cardiac PFA. METHODS: hiPSC-derived cardiomyocytes were seeded as circular cell sheets and subjected to different PFA protocols. Detailed optical mapping, cellular, and molecular characterizations were performed to study PFA mechanisms and electrophysiological outcomes. RESULTS: PFA generated electrically silenced lesions within the hiPSC-derived cardiac circular cell sheets, resulting in areas of conduction block. Both reversible and irreversible electroporation components were identified. Significant electroporation reversibility was documented within 5 to 15-minutes post-PFA. Irreversibly electroporated regions persisted at 24-hours post-PFA. Per single pulse, high-frequency PFA was less efficacious than standard (monophasic) PFA, whereas increasing pulse-number augmented lesion size and diminished reversible electroporation. PFA augmentation could also be achieved by increasing extracellular Ca 2+ levels. Flow-cytometry experiments revealed that regulated cell death played an important role following PFA. Assessing for PFA antiarrhythmic properties, sustainable lines of conduction block could be generated using PFA, which could either terminate or isolate arrhythmic activity in the hiPSC-derived cardiac circular cell sheets. CONCLUSIONS: Cardiac electroporation may be studied using hiPSC-derived cardiac tissue, providing novel insights into PFA temporal and electrophysiological characteristics, facilitating electroporation protocol optimization, screening for potential PFA-sensitizers, and investigating the mechanistic nature of PFA antiarrhythmic properties.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3