Development of Time- and Voltage-Domain Mapping (V-T-Mapping) to Localize Ventricular Tachycardia Channels During Sinus Rhythm

Author:

Nayyar Sachin1,Kuklik Pawel1,Ganesan Anand N.1,Sullivan Thomas R.1,Wilson Lauren1,Young Glenn D.1,Sanders Prashanthan1,Roberts-Thomson Kurt C.1

Affiliation:

1. From the Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Australia (S.N., P.K., A.N.G., L.W., G.D.Y., P.S., K.C.R.-T.); and School of Public Health, University of Adelaide, Australia (T.R.S.).

Abstract

Background— In ventricular scar, impulse spread is slow because it traverses split and zigzag channels of surviving muscle. We aimed to evaluate scar electrograms to determine their local delay (activation time) and inequality in voltage splitting (entropy), and their relationship to channels. We reasoned that unlike innocuous channels, which are often short with multiple side branches, ventricular tachycardia (VT) supporting channels have very slow impulse spread and possess low entropy because of their longer protected length and relative lack of side-branching. Methods and Results— Patients with ischemic cardiomyopathy and multiple VT were studied. In initial mapping stage (16 patients and 58 VTs), left ventricular endocardial mapping was performed in sinus rhythm. Detailed pace mapping was used to identify VT channels and confirmed, when feasible, by entrainment. Scar electrograms were analyzed in time and voltage domains to determine mean activation time, dispersion in activation time, and entropy. Predictive performances of these properties to detect VT channels were tested. In the application stage (7 patients and 20 VTs), these properties were prospectively tested to guide catheter ablation. A mean number of 763±203 sampling points were taken. From 1770 pace maps, 47 channels corresponded to VTs. A combination of scar electrograms with the latest mean activation time and minimum entropy, in a high activation dispersion region, accurately recognized regions containing VT channels (κ=0.89, sensitivity=86%, specificity=100%, positive predictive value=93%, and negative predictive value=100%). Finally, focused ablation within 5-mm rim of the prospective channel regions eliminated 18 of 20 inducible VTs. Conclusions— Activation time and entropy mapping in the scar accurately identify VT channels during sinus rhythm. The method integrates principles of reentry formation to recognize VT channels without pace mapping or mapping during VT.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3