Green Tea Catechin Normalizes the Enhanced Ca 2+ Sensitivity of Myofilaments Regulated by a Hypertrophic Cardiomyopathy–Associated Mutation in Human Cardiac Troponin I (K206I)

Author:

Warren Chad M.1,Karam Chehade N.1,Wolska Beata M.1,Kobayashi Tomoyoshi1,de Tombe Pieter P.1,Arteaga Grace M.1,Bos J. Martijn1,Ackerman Michael J.1,Solaro R. John1

Affiliation:

1. From the Department of Physiology and Biophysics, Center for Cardiovascular Research (C.M.W., C.N.K., B.M.W., T.K., R.J.S.) and Division of Cardiology, Department of Medicine (B.M.W.), University of Illinois at Chicago; Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL (P.P.d.T.); and Division of Pediatric Critical Care and Physiology, Department of Pediatrics (G.M.A.), Department of Molecular Pharmacology and Experimental Therapeutics,...

Abstract

Background— Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3) and elucidate the mechanism of dysfunction at the level of myofilament proteins. Methods and Results— The male index case was diagnosed with HCM after an out-of-hospital cardiac arrest, which was followed by comprehensive clinical evaluation, transthoracic echocardiography, and clinical genetic testing. To determine molecular mechanism(s) of the mutant human cardiac troponin I (K206I), we tested the Ca 2+ dependence of thin filament–activated myosin-S1–ATPase activity in a reconstituted, regulated, actomyosin system comparing wild-type human troponin complex, 50% mix of K206I/wildtype, or 100% K206I. We also exchanged native troponin detergent extracted fibers with reconstituted troponin containing either wildtype or a 65% mix of K206I/wildtype and measured force generation. The Ca 2+ sensitivity of the myofilaments containing the K206I variant was significantly increased, and when treated with 20 µmol/L (-)-epigallocatechin gallate (green tea) was restored back to wild-type levels in ATPase and force measurements. The K206I mutation impairs the ability of the troponin I to inhibit ATPase activity in the absence of calcium-bound human cardiac troponin C. The ability of calcium-bound human cardiac troponin C to neutralize the inhibition of K206I was greater than with wild-type TnI. Conclusions— Compromised interactions of K206I with actin and hcTnC may lead to impaired relaxation and HCM.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics(clinical),Cardiology and Cardiovascular Medicine,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3