Plasma Proteomics for Epidemiology

Author:

Yin Xiaoke1,Baig Ferheen1,Haudebourg Eloi1,Blankley Richard T.1,Gandhi Tejas1,Müller Sebastian1,Reiter Lukas1,Hinterwirth Helmut1,Pechlaner Raimund1,Tsimikas Sotirios1,Santer Peter1,Willeit Johann1,Kiechl Stefan1,Witztum Joseph L.1,Sullivan Anthony1,Mayr Manuel1

Affiliation:

1. From the King’s British Heart Foundation Centre, King’s College London, United Kingdom (X.Y., F.B., E.H., H.H., M.M.); Agilent Technologies Ltd, Cheadle, United Kingdom (R.T.B., A.S.); Biognosys AG, Schlieren, Switzerland (T.G., S.M., L.R.); Department of Neurology, Medical University of Innsbruck, Austria (R.P., J.W., S.K.); School of Medicine, University of California San Diego (S.T., J.L.W.); and Department of Laboratory Medicine, Bruneck Hospital, Italy (P.S.).

Abstract

Background— Mass spectrometry is selective and sensitive, permitting routine quantification of multiple plasma proteins. However, commonly used nanoflow liquid chromatography (LC) approaches hamper sample throughput, reproducibility, and robustness. For this reason, most publications using plasma proteomics to date are small in study size. Methods and Results— Here, we tested a standard-flow LC mass spectrometry (MS) method using multiple reaction monitoring for the application to large epidemiological cohorts. We have reduced the LC-MS run time to almost a third of the nanoflow LC-MS approach. On the basis of a comparison of the quantification of 100 plasma proteins in >1500 LC-MS runs, the SD range of the retention time during continuous operation was substantially lower with the standard-flow LC-MS (<0.05 minutes) compared with the nanoflow LC-MS method (0.26–0.44 minutes). In addition, the standard-flow LC method also offered less variation in protein measurements. However, 5× more sample volume was required to achieve similar sensitivity. Two different commercial multiple reaction monitoring kits and an antibody-based multiplexing kit were used to compare the apolipoprotein measurements in a subset of samples. In general, good agreement was observed between the 2 multiple reaction monitoring kits, but some of the multiple reaction monitoring–based measurements differed from antibody-based assays. Conclusions— The multiplexing capability of LC-MS combined with a standard-flow method increases throughput and reduces the costs of large-scale protein measurements in epidemiological cohorts, but protein rather than peptide standards will be required for defined absolute proteoform quantification.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Genetics (clinical),Cardiology and Cardiovascular Medicine,Genetics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3