Adult Ventricular Myocytes Segregate KCNQ1 and KCNE1 to Keep the I Ks Amplitude in Check Until When Larger I Ks Is Needed

Author:

Jiang Min1,Wang Yuhong1,Tseng Gea-Ny1

Affiliation:

1. From the Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond (M.J., Y.W., G.-N.T.); and Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (M.J.).

Abstract

Background— KCNQ1 and KCNE1 assemble to form the slow delayed rectifier ( I Ks ) channel critical for shortening ventricular action potentials during high β-adrenergic tone. However, too much I Ks under basal conditions poses an arrhythmogenic risk. Our objective is to understand how adult ventricular myocytes regulate the I Ks amplitudes under basal conditions and in response to stress. Methods and Results— We express fluorescently tagged KCNQ1 and KCNE1 in adult ventricular myocytes and follow their biogenesis and trafficking paths. We also study the distribution patterns of native KCNQ1 and KCNE1, and their relationship to I Ks amplitudes, in chronically stressed ventricular myocytes, and use COS-7 cell expression to probe the underlying mechanism. We show that KCNQ1 and KCNE1 are both translated in the perinuclear region but traffic by different routes, independent of each other, to their separate subcellular locations. KCNQ1 mainly resides in the jSR (junctional sarcoplasmic reticulum), whereas KCNE1 resides on the cell surface. Under basal conditions, only a small portion of KCNQ1 reaches the cell surface to support the I Ks function. However, in response to chronic stress, KCNQ1 traffics from jSR to the cell surface to boost the I Ks amplitude in a process depending on Ca binding to CaM (calmodulin). Conclusions— In adult ventricular myocytes, KCNE1 maintains a stable presence on the cell surface, whereas KCNQ1 is dynamic in its localization. KCNQ1 is largely in an intracellular reservoir under basal conditions but can traffic to the cell surface and boost the I Ks amplitude in response to stress.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3