Novel Measure of Local Impedance Predicts Catheter–Tissue Contact and Lesion Formation

Author:

Sulkin Matthew S.1,Laughner Jacob I.1,Hilbert Sebastian1,Kapa Suraj1,Kosiuk Jedrzej1,Younan Paul1,Romero Iñaki1,Shuros Allan1,Hamann Jason J.1,Hindricks Gerhard1,Bollmann Andreas1

Affiliation:

1. Electrophysiology, Boston Scientific Corp, St. Paul, MN (M.S.S., J.I.L., P.Y., I.R., A.S., J.J.H.); Department of Electrophysiology, University Leipzig – Heart Center, Germany (S.H., J.K., G.H., A.B.); and Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN (S.K.).

Abstract

Background: Coupling between the ablation catheter and myocardium is critical to resistively heat tissue with radiofrequency ablation. The objective of this study was to evaluate whether a novel local impedance (LI) measurement on an ablation catheter identifies catheter–tissue coupling and is predictive of lesion formation. Methods and Results: LI was studied in explanted hearts (n=10 swine) and in vivo (n=10; 50–70 kg swine) using an investigational electroanatomic mapping system that measures impedance from an ablation catheter with mini-electrodes incorporated in the distal electrode (Rhythmia and IntellaNav MiFi OI, Boston Scientific). Explanted tissue was placed in a warmed (37 °C) saline bath mounted on a scale, and LI was measured 15 mm away from tissue to 5 mm of catheter–tissue compression at multiple catheter angles. Lesions were created with 31 and 50 W for 5 to 45 seconds (n=90). During in vivo evaluation of LI, measurements of myocardium (n=90) and blood pool (n=30) were guided by intracardiac ultrasound while operators were blinded to LI data. Lesions were created with 31 and 50 W for 45 seconds in the ventricles (n=72). LI of myocardium (119.7 Ω) was significantly greater than that of blood pool (67.6 Ω; P <0.01). Models that incorporate LI drop (ΔLI) to predict lesion size had better performance than models that incorporate force-time integral ( R 2 =0.75 versus R 2 =0.54) and generator impedance drop ( R 2 =0.82 versus R 2 =0.58). Steam pops displayed a significantly higher starting LI and larger ΔLI compared with successful radiofrequency applications ( P <0.01). Conclusions: LI recorded from miniature electrodes provides a valuable measure of catheter–tissue coupling, and ΔLI is predictive of lesion formation during radiofrequency ablation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3