Differentiating Atrioventricular Reentry Tachycardia and Atrioventricular Node Reentry Tachycardia Using Premature His Bundle Complexes

Author:

Padanilam Benzy J.1,Ahmed Asim S.1,Clark Brad A.1,Gilge Jasen L.1,Patel Parin J.1,Prystowsky Eric N.1,Steinberg Leonard A.1

Affiliation:

1. Department of Cardiac Electrophysiology, St. Vincent Medical Group, Cardiac Electrophysiology, Indianapolis, IL.

Abstract

Background: Current maneuvers for differentiation of atrioventricular node reentry tachycardia (AVNRT) and atrioventricular reentry tachycardia (AVRT) lack sensitivity and specificity for AVRT circuits located away from the site of pacing. We hypothesized that a premature His complex (PHC) will always perturb AVRT because the His bundle is obligatory to the circuit. Further, AVNRT could not be perturbed by a late PHC (≤20 ms ahead of the His) due to the retrograde His conduction time. Earlier PHCs can advance the AVNRT circuit but only by a quantity less than the prematurity of the PHC. Methods: High-output pacing at the distal His location delivered PHCs. AVRT was predicted when late PHCs perturbed tachycardia or when earlier PHCs led to atrial advancement by an amount equal or greater than the degree of PHC prematurity. Results: Among the 73 supraventricular tachycardias, the test accurately predicted AVRT (n=29) and AVNRT (n=44) in all cases. Late PHC advanced the circuit in all 29 AVRTs and none of the AVNRTs (sensitivity and specificity, 100%). With earlier PHCs, the degree of atrial advancement was equal or greater than the PHC prematurity in 26/29 AVRTs and none of the AVNRTs (90% sensitivity and 100% specificity). The mean prematurity of the PHC required to perturb AVNRT was 48 ms (range, 28–70 ms) and the advancement less than the prematurity of the PHC (mean, 32 ms; range, 18–54 ms). Conclusions: The responses to PHCs distinguished AVRT and AVNRT with 100% specificity and sensitivity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3