Localization of muscarinic receptor mRNAs in rat heart and intrinsic cardiac ganglia by in situ hybridization.

Author:

Hoover D B1,Baisden R H1,Xi-Moy S X1

Affiliation:

1. Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City 37614.

Abstract

Although the heart is considered a relatively pure source of m2 muscarinic receptors, the possible expression of other muscarinic receptor genes at discrete sites within the myocardium or by intrinsic cardiac ganglia had not been evaluated. Accordingly, the present study used in situ hybridization histochemistry with 35S-labeled oligonucleotide probes to address this issue. Initial experiments demonstrated that the localization of m2 mRNA was similar to that reported for muscarinic receptors labeled with the nonselective muscarinic antagonist quinuclidinyl benzilate; however, there were two important exceptions. The conducting system contained less message than expected, whereas the intrinsic cardiac ganglia contained more. The mismatch between muscarinic receptor and m2 mRNA densities in the conducting system could not be explained by the local expression of other muscarinic receptor genes, since m1, m3, and m4 mRNAs were not detected at this or any other site within the myocardium. However, the presence of a high density of prejunctional muscarinic receptors in the conducting system would be consistent with such a mismatch. Surprisingly, the intrinsic cardiac ganglia contained more than four times as much m2 mRNA as found in the atria. This level of message may be necessary for the production of prejunctional receptors on cholinergic nerve fibers within the heart and receptors localized to the ganglion cell bodies. The ganglia also contained smaller amounts of m1 and m4 mRNAs. These observations suggest that prejunctional muscarinic receptors could have a prominent role in regulating cholinergic neurotransmission in the conducting system and that multiple muscarinic receptors are present in the intrinsic cardiac ganglia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3