Contraction and relaxation of isolated cardiac myocytes of the frog under varying mechanical loads.

Author:

Parikh S S1,Zou S Z1,Tung L1

Affiliation:

1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205.

Abstract

The mechanics of cardiac systole and relaxation have been studied primarily at the level of the whole heart or intact muscle. End-systolic pressure-volume relations of frog hearts have been found to be load dependent, whereas those of the mammal are relatively load independent. On the other hand, myocardial relaxation as studied at the muscle level is load independent in the frog but markedly load dependent in the mammal. Interpretation of these studies is complicated because of the unknown contribution of extracellular connective tissue, neurohumoral factors, and, in the case of the heart, the complex chamber geometry. Therefore, it is valuable to study cardiac mechanics at the level of the basic unit of contractile activity--the isolated myocyte. The goal of this study was to subject isolated frog cardiomyocytes to mechanical loading paradigms that mimic those presented to the cells within the heart. In the first part of this study, the afterload and preload of contracting cells were varied to study their effects on the end-systolic force-length relation, which was consistently found to be load independent over the range of isotonic shortening tested (typically 5%). We also investigated the force-length-time response of the cells to test the concept of the heart behaving as a time-varying elastance. Our results suggest that in this regard the frog myocyte behaves like mammalian muscle, and they are consistent with the presence of a small viscosity within the cell. We conclude that the tissue structure of the frog heart may contribute to disparity in mechanical behavior at the different structural levels. In the second part of this study, we subjected isolated frog cardiomyocytes to four different loading paradigms to test the hypothesis that myocardial relaxation in the frog is independent of load. These sequences consisted of afterloaded contractions followed by conventional isotonic-isometric relaxation (ACCR) or afterloaded contractions followed by physiologically reversed isometric-isotonic relaxation (ACPR). Relaxation was measured under isometric conditions using a variable afterload with either the ACCR or ACPR paradigms. The decay of force was independent of the cell length at which it occurred or the amount of shortening prior to it within the contractile cycle. Relaxation also was measured as relengthening of the cell under isotonic late-load conditions, using the ACPR paradigm either with a variable afterload or variable late load. Relengthening had a time course that was unaffected by changes in afterload (i.e., extents of shortening) or late load (equivalent to the filling pressure for the heart).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference56 articles.

1. Die Grundform des arteriellen Pulses;Frank 0;Z Biol,1898

2. Reichel H: Die Beziehungen zwischen Laenge und Spannung Volumen und Druck des Herzmuskels. Z Biol 1939;99:63-79

3. Instantaneous Pressure-Volume Relationships and Their Ratio in the Excised, Supported Canine Left Ventricle

4. End-systolic pressure/volume ratio: A new index of ventricular contractility

5. Cardiac muscle mechanics and ventricular performance: Force and time parameters;Downing SE;Am J Physiol,1964

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3