Pituitary-specific transcription factor (Pit-1) binding site in the human renin gene 5'-flanking DNA stimulates promoter activity in placental cell primary cultures and pituitary lactosomatotropic cell lines.

Author:

Sun J1,Oddoux C1,Gilbert M T1,Yan Y1,Lazarus A1,Campbell W G1,Catanzaro D F1

Affiliation:

1. Cardiovascular Center, Cornell University Medical College, New York, NY.

Abstract

Renin gene expression is limited to a number of specific tissues, including the kidney, adrenal glands, reproductive organs (of particular relevance to this study, the placenta), and the pituitary gland. In the present study, we investigated the human renin (hRen) 5'-flanking DNA sequences required to drive the expression of a luciferase reporter gene in placental and pituitary cells and in two cell lines, 293 and JEG-3, which have been proposed as model systems with which to study transcriptional regulation of renin genes. The activities of specific sequences in the hRen 5'-flanking DNA sequences in human placental cell primary cultures were very similar to those that we previously reported in pituitary cells, suggesting the involvement of common promoter elements and related transcription factors. Accordingly, the binding site for the pituitary-specific transcription factor (Pit-1) was the major determinant of renin promoter activity in both pituitary and placental cells. Gel mobility shift analysis showed a placental nuclear factor with a gel mobility different from that of Pit-1. However, Northern blot analysis failed to demonstrate abundant Pit-1-related mRNAs in renin-expressing cultures of chorionic and decidual cells, suggesting that the placental factor is not closely related to Pit-1. Although a factor from 293 cells also bound to the Pit-1 site, it had gel mobility shift characteristics different from Pit-1 and the placental factor. Moreover, the low promoter activity in 293 cells was independent of this site or, indeed, of sequences upstream from the TATA box. In JEG-3 cells, renin 5'-flanking DNA sequences showed virtually no transcriptional activity.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference35 articles.

1. Sealey JE Laragh JH. The renin-angiotensin-aldosterone system for normal regulation of blood pressure and sodium and potassium homeostasis. In: Laragh JH Brenner BM eds. Hypertension: Pathophysiology Diagnosis and Management. New York NY: Raven Press Publishers; 1990:1287-1317.

2. Association of the Renin-Sodium Profile with the Risk of Myocardial Infarction in Patients with Hypertension

3. Essential Hypertension: Renin and Aldosterone, Heart Attack and Stroke

4. Tissue-specific expression of the human renin gene in transgenic mice

5. Structure, expression, and regulation of the murine renin genes.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3