Functional and Structural Assessment of Intercellular Communication

Author:

Darrow Bruce J.1,Fast Vladimir G.1,Kléber André G.1,Beyer Eric C.1,Saffitz Jeffrey E.1

Affiliation:

1. the Departments of Pathology, Medicine, and Pediatrics (B.J.D., E.C.B., J.E.S.), Washington University, St Louis, Mo, and the Department of Physiology (V.G.F., A.G.K.), University of Bern (Switzerland).

Abstract

Remodeling of conduction pathways in the hypertrophic response to myocardial injury is a potential mechanism leading to the development of anatomic substrates of lethal arrhythmias. To delineate the responsible mechanisms and to directly relate changes in intercellular coupling at gap junctions with electrophysiological alterations, we studied the effects of cAMP, a mediator of cardiac hypertrophy, on action potential conduction velocity and connexin expression in neonatal rat ventricular myocyte cultures. Conduction velocity was measured with an optical activation mapping technique in cells loaded with the voltage-sensitive dye RH-237. Action potentials were conducted 24% to 29% more rapidly ( P <.005) after incubating cultures for 24 hours with the cAMP analogue dibutyryl cAMP (db-cAMP, 1 mmol/L). However, db-cAMP caused no change in the maximum rate of rise of the action potential upstroke, V̇ max . Electron and immunofluorescence microscopy revealed a significant increase in the number and size of gap junctions in db-cAMP–treated cells. Immunoblotting showed that the total amounts of the ventricular gap junction proteins connexin43 and connexin45 (Cx43 and Cx45, respectively) increased 2- to 4-fold. Immunoprecipitation of metabolically labeled connexin proteins revealed a dose-dependent increase in the rate of Cx45 protein synthesis in myocytes exposed to db-cAMP (>2-fold after a 4-hour exposure) but no change in the Cx43 synthesis rate. Northern blot analysis demonstrated a time-dependent increase in the amount of Cx43 mRNA, with a maximum 3.3-fold increase after 4 hours of exposure to 1 mmol/L db-cAMP; cycloheximide did not block this effect. In contrast, Cx45 mRNA levels were not altered significantly after db-cAMP treatment. Thus, cAMP causes a significant increase in conduction velocity that appears to be attributable largely to enhanced expression of proteins responsible for intercellular communication. Cx43 and Cx45 levels appear to be upregulated by cAMP by disparate molecular mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3