Ribozyme-Mediated Inhibition of Expression of Leukocyte-type 12-Lipoxygenase in Porcine Aortic Vascular Smooth Muscle Cells

Author:

Gu Jia-Li1,Veerapanane Dange1,Rossi John1,Natarajan Rama1,Thomas Lisa1,Nadler Jerry1

Affiliation:

1. From the Department of Diabetes, Endocrinology, and Metabolism, City of Hope Medical Center, and Center for Molecular Biology and Gene Therapy (J.R.), Loma Linda (Calif) University, School of Medicine.

Abstract

Abstract Activation of a leukocyte-type 12-lipoxygenase (12-LO) has been proposed to be an important mechanism for angiotensin II– and glucose-induced vascular smooth muscle cell growth. Currently, no specific pharmacological inhibitors for the leukocyte-type 12-LO are available to test this hypothesis. We have therefore designed a chimeric DNA-RNA hammerhead ribozyme to produce cleavage at the first GUC sequence at nucleotide 7 of porcine leukocyte 12-LO mRNA. The ribozyme was tested in vitro with a 206-base 12-LO mRNA as substrate. We observed that the ribozyme specifically and dose-dependently cleaved porcine leukocyte 12-LO mRNA at the predicted site under physiological temperature. Furthermore, we also efficiently delivered the ribozyme into porcine aortic vascular smooth muscle cells by transfection with cationic liposomes. The ribozyme caused a dose-dependent decrease in levels of porcine leukocyte-type 12-LO mRNA in these cells and was more potent than an antisense oligonucleotide directed against porcine leukocyte 12-LO. The 12-LO ribozyme also attenuated 12-LO protein levels in the cells. The action of the ribozyme was primarily a result of its catalytic activity, since a modified ribozyme that lacks catalytic activity showed reduced effects. This represents the first ribozyme directed against a mammalian LO pathway. These results demonstrate the potential utility of new ribozyme technology to generate novel agents for gene modulation experiments to modify the development or progression of vascular disease in humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3