Chronic nonocclusive coronary artery constriction impairs ventricular function, myocardial structure, and cardiac contractile protein enzyme activity in rats.

Author:

Capasso J M1,Malhotra A1,Li P1,Zhang X1,Scheuer J1,Anversa P1

Affiliation:

1. Department of Medicine, New York Medical College, Valhalla 10595.

Abstract

To determine the effects of chronic nonocclusive coronary constriction on cardiac hemodynamics, structural integrity, and contractile protein enzyme activity, the left coronary artery was narrowed in rats, and measurements of ventricular performance, magnitude, and distribution of tissue damage and myofibrillar Mg2+ and Ca2+ myosin ATPase activities were evaluated 1 month later. In the presence of coronary artery stenosis averaging 58%, three levels of involvement of global cardiac performance were identified, and the rats were divided accordingly. In the first group, only left ventricular end-diastolic pressure (LVEDP) was increased; in the second group, LVEDP and left ventricular +dP/dt and/or -dP/dt were affected; and in the third group, LVEDP, left ventricular +dP/dt and -dP/dt, and right ventricular end-diastolic pressure were impaired. Thus, left ventricular moderate dysfunction, severe dysfunction, and failure occurred with coronary narrowing. On a structural basis, coronary constriction resulted in an ongoing process characterized by acute myocytolytic necrosis and foci of replacement fibrosis in different stages of healing. The number of these lesion profiles in the left ventricular myocardium increased 4.7-, 4.4-, and 8.3-fold in rats with moderate dysfunction, severe dysfunction, and failure, respectively. Biochemically, Mg(2+)-ATPase activity of myofibrils increased biventricularly when moderate dysfunction was present. However, this parameter decreased with the appearance of severe dysfunction, reaching control values in ventricular failure. Ca2+ myosin ATPase activity was reduced in the left ventricle of rats with severe dysfunction and failure, whereas it was elevated in the right ventricle of rats with severe dysfunction. In conclusion, a fixed lesion of the left main coronary artery with a modest reduction in vessel luminal diameter generates a conditioned state of the heart characterized by a continuous loss of myocytes and replacement scarring, which, in combination with alterations in contractile protein enzyme activity, may be responsible for a number of abnormalities in cardiac dynamics ranging from moderate dysfunction to pump failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3