Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Attenuation by ruthenium red administered during reperfusion.

Author:

Benzi R H1,Lerch R1

Affiliation:

1. Cardiology Center, University Hospital, Geneva, Switzerland.

Abstract

The oxidative metabolic rate may be disproportionately high compared with contractile function in postischemic reperfused myocardium. To study the potential involvement of intracellular calcium transport in high energy expenditure after reperfusion, we determined in isolated rat hearts the effect of ruthenium red, an inhibitor of mitochondrial calcium transport, on recovery of contractile function and oxidative metabolic rate. Hearts subjected to 60 minutes of no-flow ischemia exhibited, at 15 minutes after the onset of reperfusion, poor recovery of left ventricular pressure development to only 7% of the corresponding value measured in control hearts (p less than 0.01). However, myocardial oxygen consumption was recovered to 84% of control (p = NS). The ratio of isovolumic contractile performance (expressed as the product of heart rate and left ventricular pressure development) to myocardial oxygen consumption was severely depressed to 6% of control (p less than 0.01). Supplementation of the perfusate with 6 microM ruthenium red during the initial 40 minutes of reperfusion resulted in a reduction of myocardial oxygen consumption to 65% of the value measured after 15 minutes of reperfusion in hearts reperfused without ruthenium red (p less than 0.01), despite a threefold increase of left ventricular pressure development (p less than 0.05). Oxidation of both palmitate and glucose was reduced to a comparable extent by ruthenium red. The ratio of contractile performance to myocardial oxygen consumption increased progressively during infusion of ruthenium red and did not differ further from control hearts after 30 minutes of reperfusion. Cumulative myocardial release of creatine kinase was reduced by 47% (p less than 0.05) in hearts reperfused with ruthenium red-containing medium. The results provide circumstantial evidence for the hypothesis suggesting that enhanced energy expenditure by intracellular calcium transport may be involved in the mechanisms underlying the dissociation between left ventricular performance and myocardial oxidative metabolic rate early after postischemic reperfusion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3