Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.

Author:

Brillantes A M1,Bezprozvannaya S1,Marks A R1

Affiliation:

1. Department of Medicine, Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029.

Abstract

Two types of calcium channels signal excitation-contraction (E-C) coupling in striated muscle: dihydropyridine receptors (DHPRs, voltage-gated L-type calcium channels on the transverse tubule) and ryanodine receptors (RyRs, calcium release channels on the sarcoplasmic reticulum). Sarcolemmal depolarization activates the DHPR; subsequently, the RyR is activated and releases calcium that activates muscle contraction. We show in the present study that expression of the E-C coupling calcium channels is upregulated during myogenic development in the rabbit. Skeletal and cardiac muscle isoforms of the following genes were examined: the DHPR alpha 1, alpha 2, beta, and gamma subunits and the RyR. Distinct cardiac and skeletal muscle-specific cDNAs were isolated, encoding each of the DHPR subunits and the RyR. The skeletal muscle DHPR alpha 1, alpha 2, beta, and gamma subunits and the cardiac DHPR alpha 1 subunit mRNA levels increased on the day of birth and at the adult stage compared with fetal levels. The skeletal and cardiac RyR mRNA levels increased on the day of birth and at adult stages compared with fetal levels. Ryanodine binding sites increased in both skeletal and cardiac muscle. We now provide a molecular explanation for the physiological "maturation" of the E-C coupling apparatus observed at the day of birth and during early postnatal development in both skeletal and cardiac muscles. Low levels of calcium channel expression in fetal cardiac and skeletal muscle make these tissues more sensitive to pharmacological therapy with calcium channel blockers, a phenomenon that has been reported in human neonates.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3