Affiliation:
1. From the Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia.
Abstract
Abstract
Endothelin is a powerful inotropic peptide that increases isometric force in isolated papillary muscle and the extent of shortening in isolated single cardiac myocytes. Its mechanism of action has been variously attributed to increased Ca
2+
activation, increased Ca
2+
sensitivity of the contractile proteins, and increased intracellular pH, but the physiological function of the changes in cardiac performance remains obscure. In this study, the effects of endothelin-1 on both force development and the kinetics of contraction have been examined. Isometric force, actomyosin ATPase activity, and unloaded shortening velocity were measured. The effects were dose dependent. From 1 to 50 pmol/L endothelin-1 did not alter force development in isolated trabeculae with intact endothelial cells, but actomyosin ATPase activity was increased. Between 100 pmol/L and 10 nmol/L endothelin-1 raised isometric force, decreased actomyosin ATPase activity, and decreased unloaded shortening velocity. The reduction in ATPase activity was progressively enhanced as sarcomere length was increased from 1.9 to 2.4 μm. These results indicate that the effects of endothelin-1 on the force of contraction and the rate of ATP hydrolysis are not tightly coupled and are changed in the opposite directions by endothelin-1 over most of its effective-dose range. This raises the possibility that endothelin-1 may increase the economy of contraction. A novel function of endothelin may be the modulation of the efficiency of contraction, particularly when increased preload raises the contractile work of the heart.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine,Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献