Affiliation:
1. From the Department of Internal Medicine and Graduate Center for Nutritional Sciences (Z.Z., M.C.d.B., L.C., R.A., F.C.d.B., W.J.S.d.V., D.R.v.d.W.), University of Kentucky Medical Center, Lexington; and Department of Veterans Affairs Medical Center (Z.Z., M.C.d.B., L.C., F.C.d.B., W.J.S.d.V., D.R.v.d.W.), Lexington, Ky.
Abstract
Objective—
To investigate the potential of circulating low-density lipoprotein (LDL), isolated from apolipoprotein E (apoE)-deficient mice (E−/−LDL) and from LDL receptor-deficient mice (Lr−/−LDL), to induce foam cell formation.
Methods and Results—
Binding studies using COS-7 cells overexpressing CD36, J774 cells, and mouse peritoneal macrophages (MPMs) unexpectedly showed for the first time that E−/−LDL, which is enriched in cholesterol, is a high-affinity ligand for CD36 and exhibited greater macrophage uptake than Lr−/−LDL or normal LDL. Minimal copper-mediated oxidization of Lr−/−LDL or C57LDL in vitro resulted in increased ligand internalization, although cell uptake of these oxidized LDLs was lower than that of E−/−LDL, even at oxidation levels similar to that found in E−/−LDL. Treatment of MPMs with E−/−LDL and Lr−/−LDL (to a 2- to 3-fold lesser extent), but not normal LDL, resulted in significant cellular cholesteryl ester accumulation and foam cell formation. Experiments using MPMs lacking CD36, scavenger receptor class A (SR-A), or both, indicated a major contribution of CD36 (≈50%), and to a lesser extent, SR-A (24% to 30%), to E−/−LDL uptake.
Conclusions—
Because of its increased state of oxidation and high cholesterol content, LDL in apoE-deficient mice acts in a proatherogenic manner, without requiring further modification in the vascular wall, to induce foam cell formation through its uptake by scavenger receptors.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献