C-Reactive Protein and Annexin A5 Bind to Distinct Sites of Negatively Charged Phospholipids Present in Oxidized Low-Density Lipoprotein

Author:

van Tits Lambertus1,de Graaf Jacqueline1,Toenhake Helga1,van Heerde Waander1,Stalenhoef Anton1

Affiliation:

1. From the Department of Medicine (L.v.T., J.d.G., H.T., A.S.), Division of General Internal Medicine and Central Hematology Laboratory (W.v.H.), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.

Abstract

Objective— To investigate binding of C-reactive protein (CRP) and annexin A5, 2 proteins with high affinity for negatively charged phospholipids, to oxidized low-density lipoprotein (LDL) and the consequences of these interactions for subsequent binding of oxidized LDL to monocyte/macrophage-like U937 cells. Methods and Results— We found that CRP and annexin A5 at physiological concentrations bind Ca ++ dependently to oxidized phosphatidylcholine present in oxidized LDL but not to native LDL. Binding of CRP to oxidized LDL did not interfere with binding of annexin A5, and vice versa. In the presence of 2 to 10 mg/L CRP, binding of 125 I-labeled oxidized LDL to undifferentiated U937 cells increased 50% to 100%. This effect was independent of the presence of complement and could be inhibited by irrelevant IgG and by antibodies to CD64 but not by annexin A5. Annexin A5 alone had no effect on binding of oxidized LDL to the cells. Conclusions— These findings suggest that: (1) CRP and annexin A5 at physiological concentrations bind to distinct sites of negatively charged phospholipids present in oxidized LDL; (2) CRP enhances binding of oxidized LDL to monocytic/macrophage-like cells via Fcγ receptors; and (3) annexin A5 does not antagonize the CRP-induced enhanced binding of oxidized LDL to U937 cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3