Conditional Knockout of Macrophage PPARγIncreases Atherosclerosis in C57BL/6 and Low-Density Lipoprotein Receptor–Deficient Mice

Author:

Babaev Vladimir R.1,Yancey Patricia G.1,Ryzhov Sergey V.1,Kon Valentina1,Breyer Matthew D.1,Magnuson Mark A.1,Fazio Sergio1,Linton MacRae F.1

Affiliation:

1. From the Departments of Medicine (V.R.B., P.G.Y., S.V.R., S.F., M.F.L.), Pharmacology (M.F.L.), Pathology (S.F.), Nephrology (V.K., M.D.B.), and Molecular Physiology & Biophysics (M.A.M.), Vanderbilt University Medical Center, Nashville, Tenn.

Abstract

Objective— Peroxisome proliferator-activated receptor gamma (PPARγ) is highly expressed in macrophage-derived foam cells of atherosclerotic lesions, and its expression may have a dramatic impact on atherosclerosis. Methods and Results— To investigate the contribution of macrophage PPARγ expression on atherogenesis in vivo, we generated macrophage-specific PPARγ knockout (MacPPARγKO) mice. C57BL/6 and low-density lipoprotein (LDL) receptor–deficient (LDLR −/− ) mice were reconstituted with MacPPARγKO or wild-type marrow and challenged with an atherogenic diet. No differences were found in serum lipids between recipients reconstituted with MacPPARγKO and wild-type marrow. In contrast, both C57BL/6 and LDLR −/− mice transplanted with MacPPARγKO marrow had significantly larger atherosclerotic lesions than control recipients. In addition, MacPPARγKO→LDLR −/− mice had higher numbers of macrophages in atherosclerotic lesions compared with controls. Peritoneal macrophages isolated from the MacPPARγKO mice had decreased uptake of oxidized but not acetylated LDL and showed no changes in either cholesterol efflux or inflammatory cytokine expression. Macrophages from MacPPARγKO mice had increased levels of migration and CC chemokine receptor 2 (CCR2) expression compared with wild-type macrophages. Conclusion— Thus, macrophage PPARγ deficiency increases atherosclerosis under conditions of mild and severe hypercholesterolemia, indicating an antiatherogenic role for PPARγ, which may be caused, at least in part, by modulation of CCR2 expression and monocyte recruitment.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3