Endocytosis of Extracellular Superoxide Dismutase Into Endothelial Cells

Author:

Chu Yi1,Piper Robert1,Richardson Simon1,Watanabe Yoshimasa1,Patel Pragnesh1,Heistad Donald D.1

Affiliation:

1. From the Cardiovascular Center and Departments of Internal Medicine (Y.C., Y.W., P.P., D.D.H.), Physiology and Biophysics (R.P., S.R.), and Pharmacology (D.D.H.), University of Iowa, Roy J. and Lucille A. Carver College of Medicine, and the VA Medical Center (D.D.H.), Iowa City, Iowa.

Abstract

Objective— Extracellular superoxide dismutase (EC-SOD) is a secreted antioxidant enzyme that binds to the outer plasma membrane and extracellular matrix through its heparin-binding domain (HBD). Carriers of a common genetic variant of EC-SOD (EC-SOD R213G , within the HBD) have higher plasma concentration of EC-SOD and increased risk for vascular disease. In the present study, we used confocal fluorescence microscopy to examine mechanisms of endocytosis of EC-SOD to determine whether EC-SOD translocates to the nucleus of endothelial cells, and to test the hypothesis that EC-SOD, but not EC-SOD R213G , is endocytosed into endothelial cells. Methods and Results— Mouse endothelial cells (MS-1) were incubated with EC-SOD, EC-SOD R213G , or HBD-deleted EC-SOD (EC-SODΔHBD). Binding to MS-1 was observed only with EC-SOD, but not EC-SOD R213G or EC-SODΔHBD. Endocytosis of EC-SODs was monitored after coincubation of MS-1 cells with EC-SODs and BSA-Texas Red (BSA-TR), which marks endosomes and lysosomes. Only EC-SOD was endocytosed, colocalizing with BSA-TR. EC-SOD also colocalized with early endosome antigen 1 (EEA-1), a specific marker for endocytosis. Endocytosis of EC-SOD was inhibited by chlorpromazine, but not by methyl-β-cyclodextrin or nystatin, which suggests that endocytosis of EC-SOD is mediated by clathrin but not by caveolae. Minimal or no localization of EC-SOD in the nucleus of MS-1 cells was detected. Conclusions— Our findings indicate that EC-SOD, but not EC-SOD R213G , is endocytosed into endothelial cells through clathrin-mediated pathway, but does not translocate to the nucleus. We speculate that impairment of endocytosis may contribute to high plasma levels of EC-SOD R213G in R213G carriers.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3