Extracellular Signal-Regulated Kinase–Dependent Stabilization of Hepatic Low-Density Lipoprotein Receptor mRNA by Herbal Medicine Berberine

Author:

Abidi Parveen1,Zhou Yue1,Jiang Jian-Dong1,Liu Jingwen1

Affiliation:

1. From the VA Palo Alto Health Care System (P.A., Y.Z., J.L.), Palo Alto, Calif; and Institute of Medicinal Biotechnology (J.-D.J.), Chinese Academy of Medical Sciences, Beijing, China.

Abstract

Objective— Our recent studies identified berberine (BBR) as a novel cholesterol-lowering drug that upregulates low-density lipoprotein (LDL) receptor expression through mRNA stabilization. Here, we investigated mechanisms underlying regulatory effects of BBR on LDL receptor (LDLR) messenger. Methods and Results— We show that the extracellular signal-regulated kinase (ERK) signaling pathway is used primarily by BBR to attenuate the decay of LDLR mRNA in HepG2 cells. Using different reporter constructs, we demonstrate that BBR affects LDLR mRNA stability entirely through 3′ untranslated region (UTR) in an ERK-dependent manner, and this stabilizing effect is more prominent in liver-derived cells than nonhepatic cell lines. In contrast to BBR, the mRNA stabilizing effect of bile acid chenodeoxycholic acid is mediated through the LDLR coding sequence, whereas the 5′UTR, 3′UTR, and the coding sequence of LDLR mRNA are all implicated in the action of phorbol 12-myristate 13-acetate. By performing UV cross-linking and SDS-PAGE, we identify 2 cytoplasmic proteins of 52 and 42 kDa that specifically bind to the LDLR 3′UTR in BBR-inducible and ERK-dependent manners. Conclusions— These new findings demonstrate that the BBR-induced stabilization of LDLR mRNA is mediated by the ERK signaling pathway through interactions of cis -regulatory sequences of 3′UTR and mRNA binding proteins that are downstream effectors of this signaling cascade.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3