Affiliation:
1. From the Dyslipoproteinemia and Atherosclerosis Research Unit (U.551) (A.K., S.C., M.J.C.), National Institute for Health and Medical Research (INSERM), Pavillon Benjamin Delessert, Hôpital de la Pitié, Paris, France; and the School of Medicine (E.C.d.F.), Campinas University Hospital, Campinas, Brazil.
Abstract
Objective—
Hyperalphalipoproteinemia (HALP) is characterized by elevated plasma levels of high-density lipoprotein (HDL) particles with altered composition, metabolism, and function. The impact of such modification on antioxidative activities of HDL subfractions is indeterminate.
Methods and Results—
Gradient fractionation revealed that buoyant HDL2b and 2a and small dense HDL3b and 3c levels were elevated up to 2.0-fold in HALP subjects (n=9; mean plasma HDL cholesterol, 79 mg/dL) with low hepatic lipase activity. HDL2a, 3a, 3b, and 3c displayed lower specific antioxidative activity (sAA) during low-density lipoprotein (LDL) oxidation (−15% to −86%, on a unit particle mass basis) than their normolipidemic counterparts (n=13). LDL oxidation was delayed by control HDL3a, 3b, and 3c (up to −79%) but specifically by HDL3c (−54%) in HALP. Paraoxonase activity was deficient in all HALP HDL subfractions. Paraoxonase, PAF-AH, and LCAT activities together accounted for ≈50% of variation in sAA. Abnormal chemical composition of HDL3b and 3c (cholesterol-deficient, triglyceride-enriched) in HALP was associated with impaired sAA. Systemic oxidative stress (as plasma 8-isoprostanes) tended to be elevated (1.5-fold) in HALP and negatively correlated with sAA (as TBARS).
Conclusions—
Intrinsic antioxidative activity of HDL subspecies is impaired in HALP, reflecting altered enzymatic and physicochemical properties.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Cardiology and Cardiovascular Medicine
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献