Mast Cells in Neovascularized Human Coronary Plaques Store and Secrete Basic Fibroblast Growth Factor, a Potent Angiogenic Mediator

Author:

Lappalainen Helena1,Laine Petri1,Pentikäinen Markku O.1,Sajantila Antti1,Kovanen Petri T.1

Affiliation:

1. From the Wihuri Research Institute (H.L., P.L., M.O.P., P.T.K.), Helsinki; the Division of Cardiology (P.L.), Department of Medicine, Helsinki University Central Hospital; and the Department of Forensic Medicine (A.S.), University of Helsinki, Finland.

Abstract

Objective— Intraplaque neovascularization and hemorrhage may facilitate plaque progression. We studied expression of basic fibroblast growth factor (bFGF), a potent angiogenic mediator, by mast cells (MCs) in human coronary plaques with increasing degrees of atherosclerosis. Methods and Results— Normal and atherosclerotic coronary segments were collected from 30 autopsied subjects. Immunohistochemical methods were used to detect MCs, bFGF, and microvessels. Both adventitial and intimal MCs showed intracytoplasmic granular staining for bFGF, and bFGF-positive extracellular granules were observed close to the MCs. Increased numbers of bFGF-positive MCs were detected in neovascularized areas of plaques, and there was a positive correlation between numbers of bFGF-positive MCs and microvessels in both the intima and adventitia. In plaques, the highly neovascularized areas contained increased numbers of bFGF-positive MCs compared with the adjacent nonvascularized areas, where only few MCs were present. Importantly, the proportion of intimal MCs expressing bFGF increased with increasing severity of atherosclerosis. Conclusions— The present work reveals a novel source of bFGF in human coronary arteries, the intimal and adventitial MCs. The association of bFGF-positive MCs with microvessels and with the severity of atherosclerosis suggests that coronary MCs, by releasing bFGF, may play a role in angiogenesis and progression of coronary plaques.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3