Attenuation of Myocardial Ischemia/Reperfusion Injury by Superinduction of Inducible Nitric Oxide Synthase

Author:

Kanno Shinichi1,Lee Paul C.1,Zhang Yuqing1,Ho Chien1,Griffith Bartley P.1,Shears Larry L.1,Billiar Timothy R.1

Affiliation:

1. From the Department of Biological Sciences, Carnegie Mellon University (S.K., Y.Z., C.H.), and the Department of Surgery, University of Pittsburgh (P.C.L., B.P.G., L.L.S., T.R.B.), Pittsburgh, Pa. Drs Kanno and Lee contributed equally to this work.

Abstract

Background —Nitric oxide (NO) has been implicated as a mediator in myocardial ischemia/reperfusion (I/R) injury, but its functional properties have been conflicting. We investigated whether NO has a protective role against I/R injury. Methods and Results —Using endothelial NO synthase knockout (eNOS KO) mice, inducible NOS KO mice, the NO donor S -nitroso- N -acetylpenicillamine (SNAP), and the NOS inhibitor N -iminoethyl- l -ornithine (L-NIO), we performed studies of isolated perfused hearts subjected to 30 minutes of global ischemia followed by reperfusion. After 60 minutes of reperfusion, nitrite levels in the coronary effluent in the SNAP and eNOS KO groups were significantly elevated compared with other groups. Immunoblot and immunohistochemistry showed that iNOS was markedly induced in the eNOS KO hearts. Under spontaneous beating conditions during reperfusion, increased NO activity was correlated with a prevention of the hyperdynamic contractile response and enhanced myocardial protection, as evidenced by a reduction in myocardial injury and infarct size. During prolonged reperfusion, SNAP-treated hearts were able to preserve contractile functions for 180 minutes, whereas L-NIO–treated hearts showed a sustained deterioration in contractility. Conclusions —NO protects against I/R injury by preventing the hyperdynamic response of isolated perfused hearts during early reperfusion. In the eNOS KO hearts, a paradoxical increase in NO production was seen, accompanied by a superinduction of iNOS, possibly due to an adaptive mechanism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3