Flavopiridol Inhibits Smooth Muscle Cell Proliferation In Vitro and Neointimal Formation In Vivo After Carotid Injury in the Rat

Author:

Ruef Johannes1,Meshel Adam S.1,Hu Zhaoyong1,Horaist Chris1,Ballinger Carol A.1,Thompson Larry J.1,Subbarao Vijay D.1,Dumont Jennifer A.1,Patterson Cam1

Affiliation:

1. From the Division of Cardiology and Sealy Center for Molecular Cardiology, University of Texas Medical Branch, Galveston (J.R., A.S.M., Z.H., C.H., C.A.B., L.J.T., V.D.S., C.P.), and Hoechst Marion Roussel, Inc, Bridgewater, NJ (J.A.D.).

Abstract

Background —Smooth muscle cell (SMC) proliferation is a critical component of neointimal formation in many models of vascular injury and in human lesions as well. Cell-cycle inhibition by gene transfer techniques can block SMC proliferation and lesion formation in animal models, although these methods are not yet applicable to the treatment of human disease. Flavopiridol is a recently identified, potent, orally available cyclin-dependent kinase inhibitor. Methods and Results —Using human aortic SMCs, we found that flavopiridol in concentrations as low as 75 nmol/L resulted in nearly complete inhibition of basic fibroblast growth factor–induced and thrombin-induced proliferation. At this dose, flavopiridol inhibited cyclin-dependent kinase activity, as measured by histone H1 phosphorylation, but had no effect on mitogen-activated protein kinase activation. Induction of the cell cycle–related proteins cyclin D1, proliferating cell nuclear antigen, and phosphorylated retinoblastoma protein was also blocked by flavopiridol. Flavopiridol had no effect on cellular viability. To test whether flavopiridol had a similar activity in vivo when administered orally, we examined neointimal formation in rat carotid arteries after balloon injury. Flavopiridol 5 mg/kg reduced neointimal area by 35% and 39% at 7 and 14 days, respectively, after injury. Conclusions —Flavopiridol inhibits SMC growth in vitro and in vivo. Its oral availability and selectivity for cyclin-dependent kinases make it a potential therapeutic tool in the treatment of SMC-rich vascular lesions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3