Anisotropic Reentry in a Perfused 2-Dimensional Layer of Rabbit Ventricular Myocardium

Author:

Schalij Martin J.1,Boersma Lucas1,Huijberts Maya1,Allessie Maurits A.1

Affiliation:

1. From the Department of Cardiology, Leiden University Medical Center (M.J.S.), and the Department of Physiology, Cardiovascular Research Institute, Maastricht University (L.B., M.H., M.A.A.), Netherlands.

Abstract

Background —Anisotropy creates nonuniformity in electrical propagation and may contribute to the occurrence of unidirectional conduction block and reentry. We describe the characteristics of reentrant tachycardia in a 2D layer of anisotropic ventricular myocardium. Methods and Results —A Langendorff-perfused epicardial sheet (1.0±0.4 mm, n=35) was created by freezing the intramural layers of the rabbit left ventricle. Epicardial activation maps were constructed by use of different high-resolution mapping arrays connected to a mapping system. In 5 experiments, monophasic action potentials were recorded. In the intact left ventricle, no arrhythmias except VF could be induced. After freezing, programmed electrical stimulation or rapid pacing led to the induction of sustained VT (cycle length 130±11 ms). VT was caused by reentry around a functional line of block oriented parallel to the epicardial fiber direction. Action potential recordings demonstrated that the central line of block was kept refractory by electrotonic currents generated by the depolarization waves propagating at either side of the line of block. At the pivot points of the line of block, the pronounced curvature of the turning wave and abrupt loading changes created an excitable gap of 30 ms in the reentrant pathway. Conclusions —In uniform anisotropic myocardium, reentry around a functional Z-shaped line of block may occur. The core of the circuit is kept refractory by electrotonic currents. The pronounced wave-front curvature and abrupt loading changes at the pivot points cause local conduction delay and create a small excitable gap.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3