Heart Failure Affects Mitochondrial but Not Myofibrillar Intrinsic Properties of Skeletal Muscle

Author:

De Sousa E.1,Veksler V.1,Bigard X.1,Mateo P.1,Ventura-Clapier R.1

Affiliation:

1. From the Cardiologie Cellulaire et Moléculaire U-446 INSERM (E. De S., V.V., P.M., R.V.-C.), Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France; and Unité de Bioénergétique (X.B.), CRSSA, La Tronche Cedex, France.

Abstract

Background —Congestive heart failure (CHF) induces abnormalities in skeletal muscle that are thought to in part explain exercise intolerance. The aim of the present study was to determine whether these changes actually result in contractile or metabolic functional alterations and whether they are muscle type specific. Methods and Results —With a rat model of CHF (induced by aortic banding), we studied mitochondrial function, mechanical properties, and creatine kinase (CK) compartmentation in situ in permeabilized fibers from soleus (SOL), an oxidative slow-twitch muscle, and white gastrocnemius (GAS), a glycolytic fast-twitch muscle. Animals were studied 7 months after surgery, and CHF was documented on the basis of anatomic data. Alterations in skeletal muscle phenotype were documented with an increased proportion of fast-type fiber and fast myosin heavy chain, decreased capillary-to-fiber ratio, and decreased citrate synthase activity. Despite a slow-to-fast phenotype transition in SOL, no change was observed in contractile capacity or calcium sensitivity. However, muscles from CHF rats exhibited a dramatic decrease in oxidative capacities (oxygen consumption per gram of fiber dry weight) of 35% for SOL and 45% for GAS ( P <0.001). Moreover, the regulation of respiration with ADP and mitochondrial CK and adenylate kinase was impaired in CHF SOL. Mitochondrial CK activity and content (Western blots) were dramatically decreased in both muscles. Conclusions —CHF results in alterations in both mitochondrial function and phosphotransfer systems but unchanged myofibrillar function in skeletal muscles, which suggests a myopathy of metabolic origin in CHF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3