Classic Preconditioning Decreases the Harmful Accumulation of Nitric Oxide During Ischemia and Reperfusion in Rat Hearts

Author:

Csonka Csaba1,Szilvássy Zoltán1,Fülöp Ferenc1,Páli Tibor1,Blasig Ingolf E.1,Tosaki Arpad1,Schulz Richard1,Ferdinandy Péter1

Affiliation:

1. From the Departments of Biochemistry (C.C., Z.S., A.T., P.F.) and Pharmaceutical Chemistry (F.F.), Albert Szent-Györgyi University, and the Department of Biophysics (T.P.), Biological Research Center, Szeged, Hungary; the Institute of Molecular Pharmacology (C.C., I.E.B.), Berlin, Germany; and the Departments of Pediatrics and Pharmacology, Cardiovascular Research Group (R.S., P.F.), University of Alberta, Edmonton, Canada.

Abstract

Background —The role of NO in the mechanism of preconditioning is not understood. Therefore, we studied the effect of preconditioning and subsequent ischemia/reperfusion on myocardial NO content in the presence of an NO synthase (NOS) inhibitor. Methods and Results —Isolated working rat hearts were subjected to preconditioning protocols of 3 intermittent periods of rapid pacing or no-flow ischemia of 5 minutes’ duration each followed by a test 30 minutes of global no-flow ischemia and 15 minutes of reperfusion. Test ischemia/reperfusion resulted in a deterioration of myocardial function and a considerable increase in cardiac NO content as assessed by electron spin resonance. Preconditioning improved postischemic myocardial function and markedly decreased test ischemia/reperfusion-induced NO accumulation. In the presence of 4.6 μmol/L N G -nitro- l -arginine (LNA), basal cardiac NO content decreased significantly, although test ischemia/reperfusion-induced functional deterioration and NO accumulation were not affected in nonpreconditioned hearts. However, the protective effects of preconditioning on both test ischemia/reperfusion-induced functional depression and NO accumulation were abolished. When 4.6 μmol/L LNA was administered after preconditioning, it failed to block the effect of preconditioning. In the presence of 46 μmol/L LNA, ischemia/reperfusion-induced NO accumulation was significantly decreased and postischemic myocardial function was improved in nonpreconditioned hearts. Conclusions —Our results show that (1) although NO synthesis by the heart is necessary to trigger classic preconditioning, preconditioning in turn attenuates the accumulation of NO during ischemia/reperfusion, and (2) blockade of ischemia/reperfusion-induced accumulation of cardiac NO by preconditioning or by an appropriate concentration of NOS inhibitor alleviates ischemia/reperfusion injury as demonstrated by enhanced postischemic function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3