Matrix Metalloproteinase Inhibitor Prevents Acute Lung Injury After Cardiopulmonary Bypass

Author:

Carney David E.1,Lutz Charles J.1,Picone Anthony L.1,Gatto Louis A.1,Ramamurthy N. S.1,Golub Lorne M.1,Simon Sanford R.1,Searles Bruce1,Paskanik Andrew1,Snyder Kathy1,Finck Christine1,Schiller Henry J.1,Nieman Gary F.1

Affiliation:

1. From the Departments of Surgery and Cardiovascular Perfusion, SUNY Health Science Center at Syracuse; the Department of Oral Biology and Pathology, SUNY Health Science Center at Stony Brook (N.S.R., L.M.G., S.R.S.); and the Department of Biology, SUNY at Cortland (L.A.G.), NY.

Abstract

Background —Acute lung injury (ALI) after cardiopulmonary bypass (CPB) results from sequential priming and activation of neutrophils. Activated neutrophils release neutral serine, elastase, and matrix metalloproteinases (MMPs) and oxygen radical species, which damage alveolar-capillary basement membranes and the extracellular matrix, resulting in an ALI clinically defined as adult respiratory distress syndrome (ARDS). We hypothesized that treatment with a potent MMP and elastase inhibitor, a chemically modified tetracycline (CMT-3), would prevent ALI in our sequential insult model of ALI after CPB. Methods and Results —Anesthetized Yorkshire pigs were randomized to 1 of 5 groups: control (n=3); CPB (n=5), femoral-femoral hypothermic bypass for 1 hour; LPS (n=7), sham bypass followed by infusion of low-dose Escherichia coli lipopolysaccharide (LPS; 1 μg/kg); CPB+LPS (n=6), both insults; and CPB+LPS+CMT-3 (n=5), both insults plus intravenous CMT-3 dosed to obtain a 25-μmol/L blood concentration. CPB+LPS caused severe lung injury, as demonstrated by a significant fall in Pa o 2 and an increase in intrapulmonary shunt compared with all groups ( P <0.05). These changes were associated with significant pulmonary infiltration of neutrophils and an increase in elastase and MMP-9 activity. Conclusions —All pathological changes typical of ALI after CPB were prevented by CMT-3. Prevention of lung dysfunction followed an attenuation of both elastase and MMP-2 activity. This study suggests that strategies to combat ARDS should target terminal neutrophil effectors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3