Detection of Fibrous Cap in Atherosclerotic Plaque by Intravascular Ultrasound by Use of Color Mapping of Angle-Dependent Echo-Intensity Variation

Author:

Hiro Takafumi1,Fujii Takashi1,Yasumoto Kyounori1,Murata Takashige1,Murashige Akihiro1,Matsuzaki Masunori1

Affiliation:

1. From the Department of Medical Bioregulation, Division of Cardiovascular Medicine, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan.

Abstract

Background —The thickness of the fibrous cap is a major determinant in the vulnerability of atherosclerotic plaque to rupture. It has been demonstrated that intravascular ultrasound (IVUS) backscatter from fibrous tissue is strongly dependent on the ultrasound beam angle of incidence. This study investigated the feasibility of using a new IVUS color mapping technique representing the angle-dependent echo-intensity variation to determine the thickness of the fibrous cap in atherosclerotic plaque. Methods and Results —Nineteen formalin-fixed noncalcified human atherosclerotic plaques from necropsy were imaged in vitro with a 30-MHz IVUS catheter. The IVUS catheter was moved coaxially relative to the plaque. The images showing maximum and minimum echo intensity of the plaque surface were selected to calculate the angle-dependent echo-intensity variation. A colorized representation of the echo-intensity variation in the plaque was obtained from the 2 IVUS images. A clearly bordered area with large variation in echo intensity was revealed for each plaque surface in the colorized IVUS image. The thickness ( x , mm) of this area correlated significantly with that of fibrous cap ( y , mm) measured from histologically prepared sections as y =1.05 x −0.01 ( r =0.81, P <0.0001). Bland-Altman analysis also supported the reliability of this method (mean difference, 0.00±0.10 mm). Conclusions —This novel technique for color mapping the echo-intensity variation in IVUS provided an accurate representation of the thickness of the fibrous cap in atherosclerotic plaque. This method may be useful in assessing plaque vulnerability to rupture in atherosclerosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3