Dynamic Relationship of Cycle Length to Reentrant Circuit Geometry and to the Slow Conduction Zone During Ventricular Tachycardia

Author:

Ciaccio Edward J.1

Affiliation:

1. From the Departments of Pharmacology and Biomedical Engineering, College of Physicians and Surgeons, Columbia University, New York, NY.

Abstract

Background —Knowledge of cycle-to-cycle changes in isthmus geometry is of potential importance for radiofrequency catheter ablation to stop reentrant ventricular tachycardia. It was hypothesized that isthmus geometry often undergoes continuous evolution throughout reentry and that cycle-length variability measurements could be used to segment reentry into distinct phases and to predict changes in isthmus geometry. Methods and Results —A canine infarct model of reentrant ventricular tachycardia in the epicardial border zone with a figure 8 pattern of conduction was used for analysis (25 monomorphic reentry episodes, 20 experiments). Tachycardias were segmented, on the basis of cycle-length variations, into 2 to 3 distinct phases corresponding to onset, maintenance, and spontaneous termination, when it occurred (6/25 episodes). Trends of linear cycle-length change occurred throughout the maintenance phase in all tachycardias. For each trend, quantitative geometric parameters of the isthmus were measured, and the following linear relationships were established. During a trend, the slow conduction zone activation interval and tachycardia cycle length increased, while isthmus length decreased. When isthmus length decreased, isthmus width decreased at its narrowed portion. Larger decreases in isthmus length corresponded to higher rates of linear cycle-length prolongation. Also, greater cycle-length variability tended to prolong tachycardia. Conclusions —Cycle-length alterations occur throughout reentry in this canine model and are predictive of isthmus geometry changes. Because similar reentry dynamics, which affect catheter ablation efficacy, have been observed clinically, estimation of changes in geometry during electrophysiological study may help target ablation sites.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3