Affiliation:
1. From the Department of Bioengineering, University of California, San Diego, La Jolla, Calif.
Abstract
Background
—The effect of temporal and spatial gradients in shear on primary human endothelial cell (HUVEC) proliferation was investigated. The sudden-expansion flow chamber (SEFC) model was used to differentiate the effect of temporal gradients in shear from that of spatial gradients. With a sudden onset of flow, cells are exposed to both temporal and spatial gradients of shear. The temporal gradients can be eliminated by slowly ramping up the flow.
Methods and Results
—HUVEC proliferation in the SEFC remained unstimulated when the onset of flow was slowly ramped. Sudden onset of flow stimulated a 105% increase of HUVEC proliferation (relative to ramped onset) within the region of flow reattachment. To further separate temporal and spatial gradients, a conventional parallel-plate flow chamber was used. A single 0.5-second impulse of 10 dyne/cm
2
increased HUVEC proliferation 54±3% relative to control. When flow was slowly ramped over 30 seconds, HUVEC proliferation was not significantly different from controls. Steady laminar shear over 20 minutes inhibited HUVEC proliferation relative to controls regardless of step (36±8%) or ramp (21±5%) onsets of flow.
Conclusions
—The results indicate that temporal gradients in shear stress stimulate endothelial cell proliferation, whereas spatial gradients affect endothelial proliferation no differently than steady uniform shear stress.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献