Index Matching to Improve Optical Coherence Tomography Imaging Through Blood

Author:

Brezinski Mark1,Saunders Kathleen1,Jesser Christine1,Li Xingde1,Fujimoto James1

Affiliation:

1. From the Department of Orthopedics, Harvard Medical School, Brigham and Women’s Hospital, Boston, Mass (M.B., K.S., C.J.); and the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (X.L., J.F.).

Abstract

Background —Most myocardial infarctions are caused by the rupture of small rather than large plaques in the arteries of the heart that are beyond the detection limit of current technologies. Methods and Results —Recently, optical coherence tomography (OCT) has demonstrated considerable potential as a method for high-resolution assessment of vulnerable plaque. However, intravascular OCT imaging is complicated by the need to remove blood from the imaging field because blood results in substantial signal attenuation. This work examines index matching as a method for increasing penetration. Index matching is based on the hypothesis that the predominant source of scattering in blood is the difference in refractive index between the cytoplasm of erythrocytes and serum. By increasing the refractive index of serum to a value near that of the cytoplasm, or index matching, scattering can be substantially reduced. The concept was tested with a system that pumped blood in vitro through transparent tubing. The test compounds, dextran and intravenous contrast agent, both led to significant improvements in penetration (69±12% and 45±4%). No significant effect was seen with the saline control. For dextran, the effect could not be attributed to reductions of red cell number or volume because changes in these parameters were not different from the control. In the case of intravenous contrast, a small but significant relative reduction in red cell volume was seen. Conclusions —This study demonstrates the feasibility of index matching for improving OCT imaging through blood. Future studies are required to identify compounds for effective index matching in vivo.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3