Localization of the Slow Conduction Zone During Reentrant Ventricular Tachycardia

Author:

Ciaccio Edward J.1

Affiliation:

1. From the Departments of Pharmacology and Biomedical Engineering, College of Physicians and Surgeons, Columbia University, New York, NY.

Abstract

Background —Reentrant ventricular tachycardia is sometimes difficult to treat effectively because localizing the slow conduction zone (SCZ) for catheter ablation may be problematic. It was hypothesized that a linear relationship exists between activating wave-front acceleration and deceleration in the SCZ and, respectively, contractions and expansions of the far-field extracellular signal, which could be used for SCZ localization. Methods and Results —To test the hypothesis, a model was developed to approximate SCZ location on the basis of the time interval between activation at the recording site and shifts in electrogram far-field deflections. Electrograms were recorded during reentry from 196 to 312 epicardial sites (canine model, 8 episodes). Activation maps of reentry were constructed to determine wave-front velocity, and piecewise linear adaptive template matching (PLATM) measured time shifts in far-field electrogram deflections. Linear trends of cycle length change often occurred during tachycardia (mean trend, +15 ms/96.8 cardiac cycles; r 2 =0.92). Alteration in the time interval for activation through the SCZ approximated the change in tachycardia cycle length (mean correspondence, 75.7%). The beginning and end times of far-field extracellular waveform time shifts measured by PLATM predicted the time from recording site activation to activation at the SCZ proximal and distal edges, respectively (mean absolute error with respect to activation mapping, 20.3 ms). Conclusions —During reentry, PLATM estimates the time interval from activation at any recording site near the circuit to SCZ activation. PLATM time intervals are convertible to arc lengths along the circuit for potentially more rapid and accurate update of a hand-held probe toward the SCZ for catheter ablation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3