Electrical, Morphological, and Ultrastructural Remodeling and Reverse Remodeling in a Canine Model of Chronic Atrial Fibrillation

Author:

Everett Thomas H.1,Li Hui1,Mangrum J. Michael1,McRury Ian D.1,Mitchell Mark A.1,Redick Jan A.1,Haines David E.1

Affiliation:

1. From the Cardiovascular Division, Department of Internal Medicine and Department of Cell Biology, University of Virginia Health System, Charlottesville, Va.

Abstract

Background —In patients with recurrent persistent atrial fibrillation (AF), vulnerability to AF persists indefinitely despite presumed completion of reverse electrical remodeling within days of return to normal sinus rhythm. Atrial electrical and anatomic remodeling and reverse remodeling were studied in a canine model of chronic AF. Methods and Results —Chronic AF was induced in 8 dogs by creating moderate mitral regurgitation and rapidly pacing the right atrium at 640 bpm for >8 weeks. Measurements performed at baseline, after establishment of chronic AF, and then at 4 hours and again at 7 to 14 days after cardioversion to sinus rhythm included atrial effective refractory periods, AF cycle lengths, left atrial dimensions, premature atrial contraction (PAC) frequency, and atrial vulnerability to atrial extrastimuli. After establishing chronic AF, atrial effective refractory period shortening, increases in spontaneous PAC frequency, increases in left atrial size with loss of contractility, and multiple ultrastructural abnormalities were demonstrated. Complete reverse electrical remodeling and decreases in PACs were observed after 7 to 14 days of sinus rhythm, but there was no resolution of anatomic and ultrastructural abnormalities. Occurrence of spontaneous AF paralleled PAC frequency, but vulnerability to AF induction persisted (75% immediately after conversion versus 63% at 4 hours and 50% at 7 to 14 days) despite reverse electrical remodeling. Conclusions —After conversion from chronic AF to sinus rhythm in this canine model, electrical remodeling occurs rapidly. However, gross and ultrastructural anatomic changes persist, as does vulnerability to induced AF. Vulnerability to AF initiation 7 to 14 days after cardioversion is more dependent on persisting structural abnormalities than on electrophysiological abnormalities.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference19 articles.

1. A computer model of atrial fibrillation

2. Allessie MA Rensma PL Brugada J et al. Pathophysiology of atrial fibrillation. In: Zipes DP Jalife J eds. Cardiac Electrophysiology: From Cell to Bedside. Philadelphia Pa: WB Saunders; 1990:548–559.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3