Enzymatically Degraded, Nonoxidized LDL Induces Human Vascular Smooth Muscle Cell Activation, Foam Cell Transformation, and Proliferation

Author:

Klouche Mariam1,Rose-John Stefan1,Schmiedt Walther1,Bhakdi Sucharit1

Affiliation:

1. From the Institute of Medical Microbiology (M.K., S.B.), Department of Internal Medicine (S.R.-J.), Section of Pathophysiology and Department of Heart and Thoracic Surgery (W.S.), University of Mainz, Germany.

Abstract

Background —Enzymatic, nonoxidative modification transforms LDL to an atherogenic molecule (E-LDL) that activates complement and macrophages and is present in early atherosclerotic lesions. Methods and Results —We report on the atherogenic effects of E-LDL on human vascular smooth muscle cells (SMC). E-LDL accumulated in these cells, and this was accompanied by selective induction of monocyte chemotactic protein-1 in the absence of effects on the expression of interleukin (IL)-8, RANTES, or monocyte inflammatory proteins-1α and -β). Furthermore, E-LDL stimulated the expression of gp130, the signal-transducing chain of the IL-6 receptor (IL-6R) family, and the secretion of IL-6. E-LDL invoked mitogenic effects on SMC through 2 mechanisms. First, an autocrine mitogenic circuit involving platelet-derived growth factor and fibroblast growth factor-β was induced. Second, upregulation of gp130 rendered SMC sensitive to transsignaling through the IL-6/sIL-6R activation pathway. Because E-LDL promoted release of both IL-6 and sIL-6R from macrophages, application of macrophage cell supernatants to prestimulated SMC provoked a pronounced and sustained proliferation of the cells. Conclusions —E-LDL can invoke alterations in SMC that are characteristic of the evolving atherosclerotic lesion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3