Chymase Inhibition Resolves and Prevents Deep Vein Thrombosis Without Increasing Bleeding Time in the Mouse Model

Author:

Lapointe Catherine1ORCID,Vincent Laurence1ORCID,Giguère Hugo2ORCID,Auger‐Messier Mannix2ORCID,Schwertani Adel3ORCID,Jin Denan4ORCID,Takai Shinji4ORCID,Pejler Gunnar5ORCID,Sirois Martin G.6ORCID,Tinel Hanna7ORCID,Heitmeier Stefan7ORCID,D'Orléans‐Juste Pedro1ORCID

Affiliation:

1. Department of Pharmacology and Physiology and Faculté de Médecine et des Sciences de la Santé Université de Sherbrooke Sherbrooke QC Canada

2. Department of Medicine, Service of Cardiology, Faculté de Médecine et des Sciences de la Santé Université de Sherbrooke Sherbrooke QC Canada

3. Department of Medicine McGill University Montréal QC Canada

4. Department of Innovative Medicine Osaka Medical and Pharmaceutical University Osaka Japan

5. Department of Medical Biochemistry and Microbiology Uppsala University BMC Uppsala Sweden

6. Montréal Heart Institute and Department of Pharmacology and Physiology Université de Montréal Montréal, QC Canada

7. Bayer AG, Research and Development, Pharmaceuticals Wuppertal Germany

Abstract

Background Deep vein thrombosis (DVT) is the primary cause of pulmonary embolism and the third most life‐threatening cardiovascular disease in North America. Post‐DVT anticoagulants, such as warfarin, heparin, and direct oral anticoagulants, reduce the incidence of subsequent venous thrombi. However, all currently used anticoagulants affect bleeding time at various degrees, and there is therefore a need for improved therapeutic regimens in DVT. It has recently been shown that mast cells play a crucial role in a DVT murine model. The underlying mechanism involved in the prothrombotic properties of mast cells, however, has yet to be identified. Methods and Results C57BL/6 mice and mouse mast cell protease‐4 (mMCP‐4) genetically depleted mice (mMCP‐4 knockout) were used in 2 mouse models of DVT, partial ligation (stenosis) and ferric chloride–endothelial injury model of the inferior vena cava. Thrombus formation and impact of genetically repressed or pharmacologically (specific inhibitor TY‐51469) inhibited mMCP‐4 were evaluated by morphometric measurements of thrombi immunochemistry (mouse and human DVT), color Doppler ultrasound, bleeding times, and enzymatic activity assays ex vivo . Recombinant chymases, mMCP‐4 (mouse) and CMA‐1 (human), were used to characterize the interaction with murine and human plasmin, respectively, by mass spectrometry and enzymatic activity assays. Inhibiting mast cell–generated mMCP‐4, genetically or pharmacologically, resolves and prevents venous thrombus formation in both DVT models. Inferior vena cava blood flow obstruction was observed in the stenosis model after 6 hours of ligation, in control‐ but not in TY‐51469–treated mice. In addition, chymase inhibition had no impact on bleeding times of healthy or DVT mice. Furthermore, endogenous chymase limits plasmin activity in thrombi ex vivo. Recombinant mouse or human chymase degrades/inactivates purified plasmin in vitro. Finally, mast cell–containing immunoreactive chymase was identified in human DVT. Conclusions This study identified a major role for mMCP‐4, a granule‐localized protease of chymase type, in DVT formation. These findings support a novel pharmacological strategy to resolve or prevent DVT without affecting the coagulation cascade through the inhibition of chymase activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3