Estrogen‐Related Receptor Gamma Gene Therapy Promotes Therapeutic Angiogenesis and Muscle Recovery in Preclinical Model of PAD

Author:

Sopariwala Danesh H.1ORCID,Rios Andrea S.1ORCID,Saley Addison2ORCID,Kumar Ashok3ORCID,Narkar Vihang A.14ORCID

Affiliation:

1. Brown Foundation Institute of Molecular Medicine McGovern Medical School at The University of Texas Health Science Center (UTHealth) Houston TX USA

2. Department of Biosciences Rice University Houston TX USA

3. Department of Pharmacological and Pharmaceutical Sciences University of Houston TX USA

4. Graduate School of Biomedical Sciences at UTHealth Houston TX USA

Abstract

Background Peripheral arterial disease and critical limb ischemia are cardiovascular complications associated with vascular insufficiency, oxidative metabolic dysfunction, and myopathy in the limbs. Estrogen‐related receptor gamma (ERRγ) has emerged as a dual regulator of paracrine angiogenesis and oxidative metabolism through transgenic mouse studies. Here our objective was to investigate whether postischemic intramuscular targeting of ERRγ via gene therapy promotes ischemic recovery in a preclinical model of peripheral arterial disease/critical limb ischemia. Methods and Results Adeno‐associated virus 9 (AAV9) Esrrg gene delivery vector was developed and first tested via intramuscular injection in murine skeletal muscle. AAV9‐Esrrg robustly increased ERRγ protein expression, induced angiogenic and oxidative genes, and boosted capillary density and succinate dehydrogenase oxidative metabolic activity in skeletal muscles of C57Bl/6J mice. Next, hindlimb ischemia was induced via unilateral femoral vessel ligation in mice, followed by intramuscular AAV9‐Esrrg (or AAV9‐green fluorescent protein) gene delivery 24 hours after injury. ERRγ overexpression increased ischemic neoangiogenesis and markers of endothelial activation, and significantly improved ischemic revascularization measured using laser Doppler flowmetry. Moreover, ERRγ overexpression restored succinate dehydrogenase oxidative metabolic capacity in ischemic muscle, which correlated with increased mitochondrial respiratory complex protein expression. Most importantly, myofiber size to number quantification revealed that AAV9‐Esrrg restores myofibrillar size and mitigates ischemia‐induced myopathy. Conclusions These results demonstrate that intramuscular AAV9‐Esrrg delivery rescues ischemic pathology after hindlimb ischemia, underscoring that Esrrg gene therapy or pharmacological activation could be a promising strategy for the management of peripheral arterial disease/critical limb ischemia.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3