Regulation of Cyclooxygenase- and Cytochrome P450-Derived Eicosanoids by Heme Oxygenase in the Rat Kidney

Author:

Botros Fady T.1,Laniado-Schwartzman Michal1,Abraham Nader G.1

Affiliation:

1. From the Department of Pharmacology, New York Medical College, Valhalla, NY.

Abstract

Heme oxygenase enzymes (HO-1 and HO-2) catalyze the conversion of heme to biliverdin, free iron, and carbon monoxide (CO). Heme and products derived from its metabolism potentially influence renal function and blood pressure by affecting the expression and/or activity of hemeproteins, including cytochrome P450 (CYP4A) monooxygenases and cyclooxygenases (COX-1 and COX-2). We studied HO isoform expression and examined the effect of HO-1 induction by SnCl 2 on CYP4A and COX expression and activity in the rat kidney. HO-1 protein levels in kidney tissues from untreated rats were barely detectable, whereas HO-2 protein was expressed in all kidney structures examined and its levels were higher in the outer medulla followed by the inner medulla/papilla and cortex. HO-2 expression along the nephron followed its regional distribution, ie, the highest levels were detected in the medullary thick ascending limb (mTAL) and inner medullary collecting ducts followed by proximal tubules. SnCl 2 Treatment did not significantly affect HO-2 expression or distribution; however, it markedly increased HO-1 protein in the inner and outer medulla, specifically, in the inner medullary collecting ducts and mTAL. CYP4A expression and 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis were the highest in the outer medulla followed by the cortex and inner medulla/papilla. SnCl 2 treatment reduced cortical and inner medullary CYP4A protein levels by 60% and 50% and inhibited 20-HETE synthesis by 90% and 60%, respectively. Despite a significant induction of HO-1 protein in the outer medulla, CYP4A expression and 20-HETE synthesis were hardly affected. SnCl 2 treatment did not affect COX-1 expression but markedly reduced cortical and medullary COX-2 protein levels. We conclude that HO isoform expression is segmented within the kidney and along the nephron and that treatment with an HO-1 inducer suppressed the levels of CYP4A and COX-2 proteins in a tissue-specific manner with concomitant effects on their activity. Such interactions may play an important role in the regulation of renal function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3