In Vivo Evidence for Antioxidant Potential of Estrogen in Microvessels of Female Spontaneously Hypertensive Rats

Author:

Dantas Ana Paula V.1,Tostes Rita C.A.1,Fortes Zuleica B.1,Costa Sonia G.1,Nigro Dorothy1,Carvalho Maria Helena C.1

Affiliation:

1. From the Laboratory of Hypertension, Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Brazil.

Abstract

In studies conducted in vitro, it has been demonstrated that estrogen has an antioxidant potential that may contribute to its protective effects on the cardiovascular system. However, the antioxidant effect of estrogen in vivo has not been demonstrated. To address this issue, in this study the effects of estrogen on oxidative stress were evaluated in microvessels studied in vivo. Oxidative stress was evaluated by using intravital microscopy in mesenteric arterioles from female spontaneously hypertensive rats (SHR) in physiological estrous (OE), ovariectomized (OVX), OVX treated with estradiol (E 2 ), or estradiol + progesterone (E/P). The mesenteries were superfused with hydroethidine, a reduced and nonfluorescent precursor of ethidium bromide (EB). In the presence of reactive oxygen species, hydroethidine is transformed intracellularly in EB, which binds to DNA and can be detected by its red fluorescence. The percentage of EB-positive nuclei along the arteriolar wall in OVX (28.4±4.3) was significantly increased compared with OE (14.2±3.9; P <0.05). The OVX overproduction of oxyradicals was attenuated by E 2 (15.7±2.2) and E/P (14.8±0.8). Treatment with the superoxide dismutase mimetic MnTMPyP attenuated by 75% the oxidation of hydroethidine in both OE and OVX. Conversely, mannitol, that decomposes hydroxyl radical, and L-NAME, a nitric oxide synthase inhibitor, had no significant effects on hydroethidine oxidation. No differences on hydrogen peroxide plasma concentration were observed among the groups, suggesting that superoxide anion is the most likely oxyradical involved in the increased oxidative stress observed in OVX. The treatment of mesenteries with diphenyleneiodonium (DPI), an nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase inhibitor, but not with oxypurinol, a xanthine-oxidase inhibitor, produced a significant reduction of oxyradical generation in OVX microvessels and a slight decrease in those from OE. Chronic treatment of female SHR with losartan caused similar decreases in oxyradicals in both OE and OVX, whereas diclofenac and verapamil had no effects. Together these data suggest that estrogen reduces superoxide anion bioavailability in vivo. The antioxidant effect of estrogen, which can contribute to a less pronounced endothelial dysfunction in female SHR, may be dependent on a direct modulatory action of estrogen on NADPH activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3