Cerebral Blood Flow Restoration and Reperfusion Injury After Ultraviolet Laser–Facilitated Middle Cerebral Artery Recanalization in Rat Thrombotic Stroke

Author:

Watson Brant D.1,Prado Ricardo1,Veloso Alexander1,Brunschwig J-P.1,Dietrich W. Dalton1

Affiliation:

1. From the Cerebral Vascular Disease Research Center, Department of Neurology (B.D.W., R.P., A.V.), the Miami Project to Cure Paralysis, Department of Neurological Surgery (J-P.B., W.D.D.), and the Neuroscience Program (B.D.W., W.D.D.), University of Miami School of Medicine (Fla).

Abstract

Background and Purpose A reversible model of focal thrombotic stroke was developed in the rat and examined for histological evidence of reperfusion injury after clinically relevant times of recanalization. Methods The distal middle cerebral artery of 28 male Sprague-Dawley rats was occluded by 562-nm laser-driven photothrombosis for 0.5, 2, and 3 hours or permanently (each n=7) and was recanalized by 355-nm UV laser irradiation. Occlusive material was examined by transmission electron microscopy. Cortical cerebral blood flow was monitored by laser-Doppler flowmetry. Brain infarcts were examined histologically at 3 days. Results After occlusion, cortical cerebral blood flow was reduced to 33±4% of baseline for all groups and was restored to 82±9%, 75±3%, and 93±7% of baseline for the 0.5-, 2-, and 3-hour groups, respectively, following recanalization after 29±8, 38±20, and 70±33 minutes of UV laser irradiation. The thrombotic occlusion contained compactly aggregated platelets but no fibrin, with length (1.2 to 1.8 mm) proportional to the ischemic period. During recanalization, microchannels containing erythrocytes and scattered leukocytes and bordered by intact disaggregated platelets infiltrated the thrombus. Infarct volumes (mm 3 ) at 3 days were 12±3 for the permanent case and 8±4, 24±3, and 30±9 for the 0.5-, 2-, and 3-hour cases, respectively, thus demonstrating reperfusion injury histologically in the latter 2 groups. No hemorrhage was seen. Conclusions UV laser–facilitated dissolution of a conventionally refractory platelet thrombus provides a novel and effective method for restoring blood flow without hemorrhagic complications during thrombotic stroke. This was the first observation of histologically confirmed reperfusion injury in such a model.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3