Calcium Ion Transients in Peri-Infarct Depolarizations May Deteriorate Ion Homeostasis and Expand Infarction in Focal Cerebral Ischemia in Cats

Author:

Ohta Kouichi1,Graf Rudolf1,Rosner Gerd1,Heiss Wolf-Dieter1

Affiliation:

1. From the Max-Planck-Institut für neurologische Forschung, Cologne, Germany.

Abstract

Background and Purpose —Harmful effects of peri-infarct depolarizations (PIDs) may depend on recurrent Ca 2+ influx. Thus far, few studies have documented the relevance of PIDs in gyrencephalic animals, and the progressive nature of this process has not been investigated over extended periods. We therefore studied in prolonged focal ischemia in cats spatial and temporal profiles of extracellular calcium ([Ca 2+ ] o ) shifts in relation to direct current (DC) potential, nitric oxide (NO) concentration and regional cerebral blood flow alterations, and final pathological outcome. Methods —In halothane-anesthetized cats receiving either vehicle (n=12) or MK-801 treatment (5 mg/kg IV; n=10), the left middle cerebral artery was permanently occluded. Laser-Doppler probes, ion-selective microelectrodes, and NO electrodes measured simultaneously regional cerebral blood flow, DC potential, electrocorticogram, [Ca 2+ ] o , and NO concentrations in ectosylvian and suprasylvian gyri of the left cerebral cortex. Results —Persistent depolarization immediately after middle cerebral artery occlusion occurred in 10 ectosylvian and 4 suprasylvian gyri of vehicle-treated animals and in 9 ectosylvian and 3 suprasylvian gyri of MK-801–treated animals. PIDs associated with transient decreases of [Ca 2+ ] o were detected in suprasylvian gyri of only 4 vehicle-treated animals, of which 3 developed recurrent PIDs. Electrocorticogram was suppressed during PIDs, and electrocorticogram recovery worsened in a stepwise manner with consecutive depolarizations. PID duration increased slightly with ongoing ischemia and evolved to persistent depolarization at a final stage. NO transients were not detected during PID, and regional cerebral blood flow transients were not pronounced. Infarction was larger with initial persistent depolarization than with PID and was smallest in MK-801–treated animals. Conclusions —PID is not a common finding in peri-infarct zones in cats, and it is suppressed by the N -methyl- d -aspartate antagonist MK-801. However, if repeated PIDs are generated, they result in a stepwise, progressive breakdown of neuronal function and ion homeostasis, probably contributing to the growth of infarction in focal cerebral ischemia. Recurrent Ca 2+ influx is a mechanism that presumably contributes to this process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3