Development of a Patient-Specific p.D85N-Potassium Voltage-Gated Channel Subfamily E Member 1–Induced Pluripotent Stem Cell–Derived Cardiomyocyte Model for Drug-Induced Long QT Syndrome

Author:

Kim Maengjo1,Ye Dan1ORCID,John Kim C.S.1,Zhou Wei1,Tester David J.1,Giudicessi John R.12ORCID,Ackerman Michael J.1ORCID

Affiliation:

1. Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.).

2. Departments of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN (J.R.G.).

Abstract

Background: Prior epidemiological studies demonstrated that the p.D85N-Potassium voltage-gated channel subfamily E member 1 (KCNE1) common variant reduces repolarization reserve and predisposes to drug-induced QT prolongation/torsades de pointes. We sought to develop a cellular model for drug-induced long QT syndrome using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM). Methods: p.D85N-KCNE1 iPSCs were generated from a 23-year-old female with an exaggerated heart rate-corrected QT interval response to metoclopramide (ΔQTc of 160 ms). Clustered regularly interspaced short palindromic repeats-associated 9 technology was used to generate gene-corrected isogenic iPSCs. Field potential duration and action potential duration (APD) were measured from iPSC-CMs. Results: At baseline, p.D85N-KCNE1 iPSC-CMs displayed significantly longer field potential duration (281±15 ms, n=13 versus 223±8.6 ms, n=14, P <0.01) and action potential duration at 90% repolarization (APD90; 579±22 ms, n=24 versus 465±33 ms, n=26, P <0.01) than isogenic-control iPSC-CMs. Dofetilide at a concentration of 2 nM increased significantly field potential duration (379±20 ms, n=13, P <0.01) and APD90 (666±11 ms, n=46, P <0.01) in p.D85N-KCNE1 iPSC-CMs but not in isogenic-control. The effect of dofetilide on APD90 (616±54 ms, n=7 versus 526±54 ms, n=10, P <0.05) was confirmed by Patch-clamp. Interestingly, treatment of p.D85N-KCNE1 iPSC-CMs with estrogen at a concentration of 1 nM exaggerated further dofetilide-induced APD90 prolongation (696±9 ms, n=81, P <0.01) and caused more early afterdepolarizations (11.7%) compared with isogenic control (APD90: 618±8 ms, n=115 and early afterdepolarizations: 2.6%, P <0.05). Conclusions: This iPSC-CM study provides further evidence that the p.D85N-KCNE1 common variant in combination with environmental factors such as QT prolonging drugs and female sex is proarrhythmic.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3