Hyperacute Monocyte Gene Response Patterns Are Associated With Lower Extremity Vein Bypass Graft Failure

Author:

Rehfuss Jonathan P.1,DeSart Kenneth M.1,Rozowsky Jared M.1,O’Malley Kerri A.1,Moldawer Lyle L.1,Baker Henry V.1,Wang Yaqun1,Wu Rongling1,Nelson Peter R.1,Berceli Scott A.1

Affiliation:

1. From the Malcom Randall Veterans Affairs Medical Center, Gainesville, FL (J.P.R., K.M.D., J.M.R., K.A.O., S.A.B.); Department of Surgery (J.P.R., K.M.D., J.M.R., K.A.O., L.L.M., S.A.B.) and Department of Molecular Genetics and Microbiology (H.V.B.), University of Florida, Gainesville; Department of Biostatistics, Rutgers University, New Brunswick, NJ (Y.W.); Center for Statistical Genetics, Pennsylvania State University, Hershey (R.W.); and Department of Surgery, University of South Florida, Tampa ...

Abstract

Background: Despite being the definitive treatment for lower extremity peripheral arterial disease, vein bypass grafts fail in half of all cases. Early repair mechanisms after implantation, governed largely by the immune environment, contribute significantly to long-term outcomes. The current study investigates the early response patterns of circulating monocytes as a determinant of graft outcome. Methods: In 48 patients undergoing infrainguinal vein bypass grafting, the transcriptomes of circulating monocytes were analyzed preoperatively and at 1, 7, and 28 days post-operation. Results: Dynamic clustering algorithms identified 50 independent gene response patterns. Three clusters (64 genes) were differentially expressed, with a hyperacute response pattern defining those patients with failed versus patent grafts 12 months post-operation. A second independent data set, comprised of 96 patients subjected to major trauma, confirmed the value of these 64 genes in predicting an uncomplicated versus complicated recovery. Causal network analysis identified 8 upstream elements that regulate these mediator genes, and Bayesian analysis with a priori knowledge of the biological interactions was integrated to create a functional network describing the relationships among the regulatory elements and downstream mediator genes. Linear models predicted the removal of either STAT3 (signal transducer and activator of transcription 3) or MYD88 (myeloid differentiation primary response 88) to shift mediator gene expression levels toward those seen in successful grafts. Conclusions: A novel combination of dynamic gene clustering, linear models, and Bayesian network analysis has identified a core set of regulatory genes whose manipulations could migrate vein grafts toward a more favorable remodeling phenotype.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models;Frontiers in Bioengineering and Biotechnology;2021-11-02

2. The Role of Immunomodulation in Vein Graft Remodeling and Failure;Journal of Cardiovascular Translational Research;2020-06-16

3. An omnidirectional visualization model of personalized gene regulatory networks;npj Systems Biology and Applications;2019-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3