SOS1 Gain-of-Function Variants in Dilated Cardiomyopathy

Author:

Cowan Jason R.12ORCID,Salyer Lorien12ORCID,Wright Nathan T.3ORCID,Kinnamon Daniel D.12ORCID,Amaya Pedro12ORCID,Jordan Elizabeth12ORCID,Bamshad Michael J.4ORCID,Nickerson Deborah A.5,Hershberger Ray E.126ORCID

Affiliation:

1. Dorothy M. Davis Heart and Lung Research Institute (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.

2. Division of Human Genetics (J.R.C., L.S., D.D.K., P.A., E.J., R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.

3. Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA (N.T.W.).

4. Department of Pediatrics (M.J.B.), University of Washington, Seattle.

5. Department of Genome Sciences (D.A.N.), University of Washington, Seattle.

6. Division of Cardiovascular Medicine (R.E.H.), Department of Internal Medicine, The Ohio State University College of Medicine, Columbus.

Abstract

Background: Dilated cardiomyopathy (DCM) is a genetically heterogeneous cardiac disease characterized by progressive ventricular enlargement and reduced systolic function. Here, we report genetic and functional analyses implicating the rat sarcoma signaling protein, SOS1 (Son of sevenless homolog 1), in DCM pathogenesis. Methods: Exome sequencing was performed on 412 probands and family members from our DCM cohort, identifying several SOS1 variants with potential disease involvement. As several lines of evidence have implicated dysregulated rat sarcoma signaling in the pathogenesis of DCM, we assessed functional impact of each variant on the activation of ERK (extracellular signal-regulated kinase), AKT (protein kinase B), and JNK (c-Jun N-terminal kinase) pathways. Relative expression levels were determined by Western blot in HEK293T cells transfected with variant or wild-type human SOS1 expression constructs. Results: A rare SOS1 variant [c.571G>A, p.(Glu191Lys)] was found to segregate alongside an A-band TTN truncating variant in a pedigree with aggressive, early-onset DCM. Reduced disease severity in the absence of the SOS1 variant suggested its potential involvement as a genetic risk factor for DCM in this family. Exome sequencing identified 5 additional SOS1 variants with potential disease involvement in 4 other families [c.1820T>C, p.(Ile607Thr); c.2156G>C, p.(Gly719Ala); c.2230A>G, p.(Arg744Gly); c.2728G>C, p.(Asp910His); c.3601C>T, p.(Arg1201Trp)]. Impacted amino acids occupied a number of functional domains relevant to SOS1 activity, including the N-terminal histone fold, as well as the C-terminal REM (rat sarcoma exchange motif), CDC25 (cell division cycle 25), and PR (proline-rich) tail domains. Increased phosphorylated ERK expression relative to wild-type levels was seen for all 6 SOS1 variants, paralleling known disease-relevant SOS1 signaling profiles. Conclusions: These data support gain-of-function variation in SOS1 as a contributing factor to isolated DCM.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3